- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- ubuntu18安装pyenv
Ramulet
Pythonnpmpycharmcentos
安装依赖sudoapt-getinstalllibprotobuf-devlibleveldb-devlibsnappy-devlibopencv-devlibboost-all-devlibhdf5-serial-devlibgflags-devlibgoogle-glog-devliblmdb-devprotobuf-compiler-ysudoapt-getinstallbzip2-ysud
- 配置easy3d环境经验总结
Aurora-vv
基础配置操作c++
该平台依赖boost库,cgal库和QT,下载需求版本后,boost直接安装,cgal解压后即可,qt安装之前的博客有。需注意的是该平台使用的是X64版本,如果cmake时不指定64位使用32位的话,会编译不通过mapple。需要修改CMAKE_INSTALL_PREFIX路径,默认的C:\ProgramFiles(x86)会导致生成install时没有管理员权限。cmake编译环境是config
- 光伏储能直流系统MATLAB仿真(PV光伏阵列+Boost DCDC变换器+负载+双向DCDC变换器+锂离子电池系统)
wlz249
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述光伏储能直流系统MATLAB仿真研究一、引言二、光伏储能直流系统的基本构成(一)PV光伏阵列(二)BoostDC/DC变换器(三)负载(四)双向DC/DC变换器(五)锂离子电池系统(六)控制模块(七)观测模块三、MATLAB仿真模型建立(一)光伏阵列模型(二)B
- windows下使用msys2中的库安装pcl
乞力马扎罗山的雪B
windowsc++
windows下只是想用下pcl,直接装PCL的allinone,用MSVC!!!直接装PCL的allinone,用MSVC!!!直接装PCL的allinone,用MSVC!!!5min搞定,下面别看了1.msys2安装以及配置下载安装:https://www.msys2.org/安装C++环境,toolchain,cmake等2.msys2下能使用的一些库当前的版本:eigen3.4boost1
- spark通过降低cores数量来提高成功率,错误记录之memory limit
BackToMeNow
Spark基础与提高Hivesparkhive内存优化physicalmemory
错误复现当数据量达到几百G约一亿条进行计算时,在原本的资源分配条件下失败的几率很高,失败的错误基本如下ContainerkilledbyYARNforexceedingmemorylimits.16.9GBof16GBphysicalmemoryused.Considerboostingspark.yarn.executor.memoryOverhead通常来讲,我们设计资源分配时一般指调整这几个
- 运行HQL时,报错:Container killed by YARN for exceeding memory limits
Michael312917
HiveonSparkhive
1出现问题现象搭建HiveOnSpark模式,运行HQL时:出现如下错误:ExecutorLostFailure(executor4exitedcausedbyoneoftherunningtasks)Reason:ContainerkilledbyYARNforexceedingmemorylimits.4.5GBof4.5GBphysicalmemoryused.Considerboostin
- python 调用 c_Python调用C模块(一):C api方式
weixin_40006779
python调用c
接前面Python与C相互调用(见http://www.linuxidc.com/Linux/2012-02/55040.htm),继续一点一点学习,顺便记录下笔记。大致计划如下(测试平台仅限于Windows和Linux,编译器限于MSVC、Mingw及linuxgcc):传统方式调用C模块用ctypes调用C动态库如有精力和兴趣,简单熟悉一下swig、boost.python,sip,shibo
- 基于光伏交直流混合微电网离网模式的双下垂控制Matlab Simulink仿真研究
BIdOeVNkOZSO
matlab算法开发语言
光伏交直流混合微电网离网(孤岛)模式双下垂控制Matlab/Simulink仿真模型交直流混合微电网结构:1.直流微电网,由光伏板+Boost变换器组成,最大输出功率10kW。2.交流微电网,由光伏板+Boost变换器+LCL逆变器组成,最大输出功率15kW。3.互联变换器(ILC),由LCL逆变器组成,用于连接交直流微电网。模型内容:1.直流微电网采用下垂控制,控制方式为电压电流双闭环,直流母线
- boost::asio教程(三) :boost udp编程
令狐掌门
C++boost库开发教程udp网络协议boostasioc++boost
boost::asio教程(一):tcpserver与tcpclient boost::asio教程(二):异步tcp boost::asio教程(三):boostudp编程 前面两篇主要讲了boostasiotcp编程,这一节来介绍boostudp编程,先来看看udp用到的类和方法.ip::udp::socket 与tcp类似,在tcp时用到的socket是ip::tcp::sock
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 相机-雷达联合标定direct_visual_lidar_calibration开源算法编译踩坑记录
HyperZhu
ROSUbuntu算法相机-雷达联合标定
基于场景的相机-雷达联合标定编译记录direct_visual_lidar_calibration编译1.本机环境Ubuntu18.04+Melodic相关依赖版本:Cmake-3.18.0gcc-8.4.0pcl-1.13.02.相关依赖#Installdependenciessudoaptinstalllibomp-devlibboost-all-devlibglm-devlibglfw3-d
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- 分类算法:梯度提升树(GBT)算法原理
kkchenjj
数据挖掘机器学习算法分类数据挖掘
分类算法:梯度提升树(GBT)算法原理1.简介1.1梯度提升树的起源与发展梯度提升树(GradientBoostingTree,GBT)是一种强大的机器学习算法,它基于提升方法的原理,通过迭代地构建一系列弱分类器并组合它们来形成一个强分类器。GBT的起源可以追溯到Freund和Schapire在1996年提出的AdaBoost算法,但真正将梯度提升应用于树模型的是JeromeH.Friedman在
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- boostrap组件
柒染
csshtml5html
Bootstrap来自Twitter(推特),是目前最受欢迎的前端框架。Bootstrap是基于HTML,css,JavaScript的,它简洁灵活,使得web开发更加快速。框架:顾名思义就是一套架构,它有一套比较完整的网页功能解决方案,而且控制权在框架本身,有预制的样式库,组件和插件。使用者要按照框架所规定的某种规范进行开发。这是我所学到的用CSS基础,所以我要分享给你们,希望可以帮助到你们。组
- xgboost-spark-scala
maokunnn
DMxgboostsparkscala
今天学习写scala,拿xgboost试一下~先记一下xgboost调参要点:7.xgboost中比较重要的参数介绍(1)objective[default=reg:linear]定义学习任务及相应的学习目标,可选的目标函数如下:“reg:linear”–线性回归。“reg:logistic”–逻辑回归。“binary:logistic”–二分类的逻辑回归问题,输出为概率。“binary:logi
- C++|开源日志库log4cpp和glog
奇树谦
C/C++/qtc++开源开发语言
文章目录`log4cpp`和`glog`对比1.**功能对比**2.**易用性和配置**3.**性能**4.**线程安全**5.**日志输出**6.**功能扩展**7.**适用场景**8.**总结**其它开源C++日志库1.**spdlog**2.**easylogging++**3.**Boost.Log**4.**loguru**5.**PocoLogging**6.**QtLogging(Q
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- 6 回归集成:xgb、lgb、cat
汀沿河
#2比赛常用的代码回归数据挖掘人工智能
这个代码是从kaggle上拷贝过来的:如何使用三个树模型模块化训练;文本特征如何做,如何挖掘;时间特征的处理;模型权重集成;importpandasaspdimportmathimportnumpyasnpimportjoblibimportoptunafromlightgbmimportLGBMRegressorfromcatboostimportCatBoostRegressorfromxgb
- 龙珠训练营机器学习task04
a_little_pig_
python
学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:https://tianchi.aliyun.com/competition/entrance/231702/introduction?spm=5176.20222472.J_3678908510.8.8f5e67c2RKrT98总体思路:分别使用LightGBM,xgboost,gbdt,catboost建立多个个体学习器(加入b
- LGBMRegressor CatBoostRegressor XGBRegressor回归
兔兔爱学习兔兔爱学习
竞赛代码实践回归数据挖掘
importpandasaspd#导入csv文件的库importnumpyasnp#进行矩阵运算的库importpolarsaspl#和pandas类似,但是处理大型数据集有更好的性能.#用于对一组元素计数,一个存在默认值的字典,访问不存在的值时抛出的是默认值fromcollectionsimportCounter,defaultdictimportre#用于正则表达式提取fromscipy.st
- ubuntu20.04安装使用direct_visual_lidar_calibration标定雷达和相机
小负不负
数码相机
官方链接GitHub-koide3/direct_visual_lidar_calibration:Atoolboxfortarget-lessLiDAR-cameracalibration[ROS1/ROS2]官方安装方式Installation-direct_visual_lidar_calibration安装依赖sudoaptinstalllibomp-devlibboost-all-dev
- a. UFS write booster buffer(技术 1)
>Andre<
UFS4.0解读网络服务器运维
1.概述TLCNAND的写入性能明显低于SLCNAND,因为TLCbits需要更多的编程步骤,并且具有更高的纠错概率。为了提高写入性能,部分TLCNAND(正常存储器)被配置为SLCNAND,并暂时或永久地用作写入缓冲区。使用SLCNAND作为WriteBoosterBuffer,可以以更低的延迟处理写请求,并提高整体写性能。分配给用户区域的TLCNAND的某些部分被分配为WriteBooster
- Multi-Head Latent Attention: Boosting Inference Efficiency
连理o
LLM
ContentsIntroductionMethodLow-RankKey-ValueJointCompressionDecoupledRotaryPositionEmbeddingReferencesIntroduction作者提出Multi-headLatentAttention(MLA),通过将KV压缩为CompressedLatentKV,在减小KVcache的同时保持模型精度Method
- linux安装mysql5.7
万猿丛中最秃的帅哥
linuxmysqllinuxmysql数据库
1、安装boost库boost_1_59_0连接:链接:https://pan.baidu.com/s/1sNY1niWTFjrLccPbMmcp5w提取码:pdj9在根目录的opt目录创建临时文件储存目录mkdir-p/opt/package进入临时目录cd/opt/package上传压缩包到服务器解压tar–xvzfboost_1_59_0.tar.gz进入boost目录cdboost_1_5
- ATB是什么?
人工智能深度学习
1ATB介绍AscendTransformerBoost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为AscendAI处理器,专门为Transformer类模型的训练和推理而设计。ATB加速库采用了一系列优化策略,包括算法优化、硬件优化和软件优化,能够显著提升Transformer模型的训练和推理速度,同时降低能耗和成本。具体来说,ATB加速库通过优化矩阵乘法等核心算子和注意力
- 探索高效串口通信:C++跨平台串口库serial
郎锴钦
探索高效串口通信:C++跨平台串口库serial【下载地址】C跨平台串口库serial本仓库提供了一个C++跨平台串口库`serial`的资源文件。该库基于[wjwwood/serial](https://github.com/wjwwood/serial/tree/boostless)项目进行修改,删除了不必要的文件,使得该库无需`catkin`,只需`cmake`即可使用项目地址:https:
- 机器学习笔记——Boosting中常用算法(GBDT、XGBoost、LightGBM)迭代路径
好评笔记
机器学习笔记机器学习boosting人工智能深度学习AI算法工程师
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文主要阐述Boosting中常用算法(GBDT、XGBoost、LightGBM)的迭代路径。文章目录XGBoost相对GBDT的改进引入正则化项,防止过拟合损失函数L(yi,y^i)L(y_i,\hat{y}_i)L(yi,y^i)正则化项Ω(fm)\Omega(f_m)Ω(fm)使用二阶导数信息,加速收敛一阶导数与二
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo