- s1K 数据集:是一个用于提升语言模型推理能力的高质量数据集。
数据集
2025-02-07,由斯坦福大学、华盛顿大学等研究机构创建了s1K数据集,该数据集包含1,000个精心挑选的问题,并配以推理轨迹和答案,为语言模型推理能力的提升提供了重要的数据基础。一、研究背景近年来,语言模型(LMs)在大规模预训练的基础上取得了显著进展,其性能提升主要依赖于训练时计算资源的增加。然而,随着模型规模的不断扩大,训练成本也急剧上升。为了在有限的资源下进一步提升模型性能,研究者们开
- ChatGPT智能聊天机器人实现
云端源想
chatgpt机器人
以下是一个从零实现类ChatGPT智能聊天机器人的完整开发指南,包含技术选型、核心代码逻辑和推荐学习资源:—云端平台整理一、技术架构与工具核心模型基座模型:HuggingFaceTransformers库(如GPT-2/GPT-3.5TurboAPI/LLaMA2)轻量化方案:微软DeepSpeed或MetaFairScale(降低显存占用)训练框架PyTorchLightning+Acceler
- 训练数据重复采样,让正负样本比例1:1
kimi-222
机器学习人工智能深度学习
详细解释resample函数:resample函数来自sklearn.utils,用于从数据集中重新抽样。replace=True表示允许重复抽样,即同一个样本可以被多次选中。n_samples指定抽样的数量。确保训练集数量相同:通过resample函数,你可以确保正训练集和负训练集的数量相同,即使其中一个集的数量小于另一个集的数量。如果n_train_num小于max_train_num,res
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- 当大模型训练遇上“双向飙车”:DeepSeek开源周 DualPipe解析指南
来自于狂人
人工智能gpu算力算法系统架构
前言在大模型训练中,传统流水线并行因单向数据流和通信延迟的限制,导致GPU利用率不足60%,成为算力瓶颈。DeepSeek团队提出的DualPipe双向流水线架构,通过双向计算流与计算-通信重叠的创新设计,将前向与反向传播拆解为“对称轨道”,使GPU可“边读边写、边算边传”,将流水线空闲时间压缩超50%。结合显存优化技术,其显存占用仅为传统方法的1/8,GPU利用率提升至92%,单epoch训练时
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- 【go从入门到精通】探秘struct结构体转json为什么需要首字母大写?
前网易架构师-高司机
golang从入门到精通golangjsongo结构体首字母大写golang从入门到精通go从入门到精通
目录作者简介:问题抛出分析结论作者简介:高科,先后在IBMPlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- Python(1)Python全方位指南:定义、应用与零基础入门实战
一个天蝎座 白勺 程序猿
Python入门到精通python开发语言
背景:为什么Python成为开发者必备技能?Python自1991年发布以来,凭借“简单高效”的设计理念,成为全球增长最快的编程语言。根据TIOBE2023年榜单,Python稳居前三,其核心竞争力包括:开发效率高:代码量仅为Java的1/5,C++的1/10。跨领域通吃:从Web开发到AI训练,覆盖90%以上技术场景。企业级应用:YouTube用Python处理视频推荐,NAS
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 跨域视线估计的协同对比学习(重点针对局部对比学习解释)
阳光明媚大男孩
学习人工智能
跨域视线估计的协同对比学习1.问题表述在视线估计领域中,跨域问题是指当训练数据和测试数据来自不同的领域(如不同的个体、光照条件、拍摄设备等)时,模型性能会显著下降。这种性能下降主要是因为不同领域之间的差异导致模型难以泛化。为了解决这一问题,新方法(CrossGazeGeneralization,CGaG)旨在通过特征解耦的方式减少领域差异对视线估计的影响,从而提高模型在跨域情况下的准确性和稳定性。
- DeepSeek 在代码生成方面的优势解析
草莓屁屁我不吃
人工智能aichatgpt
在AI代码生成领域,DeepSeek通过其DeepSeek-Coder模型展现出强大的能力,与OpenAI的Codex、Meta的CodeLlama、Google的AlphaCode等国际领先模型同台竞争。文章将详细解析DeepSeek在代码生成方面的优势,包括模型架构、数据训练、优化策略、编程语言支持、推理效率等核心技术点。1.DeepSeek-Coder的模型架构优化DeepSeek-Code
- Feign性能调优
௸྄ིོུ倾心ღ᭄ᝰꫛꫀꪝ
Feign性能调优测试demo地址:https://gitee.com/bjrts/spring-cloud-study-demo/tree/feign/父项目pom4.0.0com.baojiarenfeignpom1.0-SNAPSHOTeureka-servereureka-server02service-providerservice-provider02service-consumers
- DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?
facaixxx2024
AI大模型人工智能算法深度学习
deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b参数规模参数规模的区别,模
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- MindSpore:华为全场景AI框架的技术全景与生态实践
彩旗工作室
人工智能人工智能
一、框架概述MindSpore(昇思)是华为自主研发的全场景AI计算框架,于2020年3月开源,旨在实现易开发、高效执行、灵活部署三大核心目标。作为华为昇腾AI生态的基石,MindSpore支持端、边、云全场景覆盖,并深度融合昇腾处理器的算力特性,提供从模型开发、训练到推理部署的端到端能力。截至2025年,其月度开发者访问量已突破12万,成为国内开源社区最活跃的AI框架之一。二、架构设计MindS
- 过拟合:机器学习中的“死记硬背”陷阱
彩旗工作室
人工智能机器学习人工智能
在机器学习中,过拟合(Overfitting)是一个几乎每个从业者都会遇到的经典问题。它像一把双刃剑:当模型过于“聪明”时,可能会陷入对训练数据的过度依赖,从而失去处理新问题的能力。本文将从原理到实践,深入探讨过拟合的本质及应对策略。1.什么是过拟合?过拟合是指模型在训练数据上表现极佳,但在新数据(测试数据或真实场景数据)上表现显著下降的现象。通俗来说,模型像一个“死记硬背的学生”,记住了训练集中
- vue 父组件和子组件中v-model和props的使用和区别
zpjing~.~
vue.js前端javascript
一、v-model1、v-model可以在组件上使用以实现双向绑定。即父组件的值可以传递给子组件,子组件的值修改后,父组件的值会同步更新。从Vue3.4开始,推荐的实现方式是使用defineModel()宏;2、示例:最常用的使用方式:父组件的值,传值给子组件,子组件的input绑定了此字段,这样子组件input的内容修改时,父组件里的值便会同步更新,示例如下VueSFCPlayground父组件
- Python—JSON格式标签转换为TXT格式标签详细教程2(附完整代码)
资源补给站
python图像处理笔记pythonjson开发语言
这个代码主要是解析一个json文件转换成多个txt文件使用的,尤其是便于yolo训练decode_json函数中的convert函数确实是用于将坐标缩放到0-1之间的。但是,您在调用decode_json函数时设置了is_convert=False,这意味着坐标缩放功能被关闭了代码详解数字规范化的会将坐标缩放至(0—1)区间主要是修改这两个地方即可,话不多说,咱们直接附代码#下面是将`is_con
- AI技术学习笔记系列001:FastLanguageModel.get_peft_model 函数各参数的详细解释
新说一二
人工智能学习笔记
以下是关于代码中FastLanguageModel.get_peft_model函数各参数的详细解释,以及企业实际微调时的选择考量:参数详解及对微调的影响1.r=32(秩)作用:控制LoRA适配器的低秩矩阵的维度(秩),直接影响可训练参数数量。影响:r越大:适配器表达能力更强,能捕捉更复杂的任务特征,但可能导致过拟合(尤其数据量少时),训练时间和显存占用增加。r越小:参数量少,训练更快,显存占用低
- Compose 实践与探索八 —— LayoutModifier 解析
tmacfrank
Android#JetpackComposeandroidandroidjetpackkotlinui
前面几节讲的Modifier都是起辅助作用的,比如Modifier的伴生对象、CombinedModifier、ComposedModifier以及几乎所有Modifier的父接口Modifier.Element。本篇我们开始讲具有直接功效的Modifier,分为几个大类:LayoutModifier、DrawModifier等。1、LayoutModifier与Modifier.layout()
- PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码
max500600
算法pythonYOLO深度学习人工智能
以下是一个使用PyTorch实现ConditionalDCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和4个工艺参数,根据这些输入生成相应的图片。1.导入必要的库importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvisionimporttorchvision.
- QT中的布局管理
m0_55576290
qtqt开发语言
在Qt中,布局管理器(如QHBoxLayout和QVBoxLayout)的构造函数可以接受一个QWidget*参数,用于指定该布局的父控件。如果指定了父控件,布局会自动将其管理的控件添加到父控件中。在你的代码中,QHBoxLayout和QVBoxLayout的使用方式是正确的,但它们的父控件设置方式有所不同。以下是详细解释:1.QHBoxLayout*mainLayout=newQHBoxLayo
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- 一文搞懂 AI Agent 与 AI 大模型的区别
a小胡哦
人工智能ManusAiagent
在人工智能蓬勃发展的当下,新术语和新技术层出不穷。AIAgent和AI大模型便是其中的“明星”,但不少人对它们的区别感到困惑。今天,我们就以Manus这类AIAgent为例,深入剖析AIAgent与一般AI大模型的不同之处。Manus:Manus定义与核心能力AI大模型AI大模型是基于深度学习架构,通过海量数据训练得到的复杂模型,像GPT-4、文心一言等。它们具备强大的知识储备和语言理解生成能力,
- 代码随想录算法训练营第 20 天 | LeetCode235. 二叉搜索树的最近公共祖先 LeetCode701.二叉搜索树中的插入操作 LeetCode 450.删除二叉搜索树中的节点
HIT最菜电控
代码随想录算法训练营算法leetcode数据结构c++
代码随想录算法训练营Day20代码随想录算法训练营第20天|LeetCode235.二叉搜索树的最近公共祖先LeetCode701.二叉搜索树中的插入操作LeetCode450.删除二叉搜索树中的节点目录代码随想录算法训练营前言LeetCode235.二叉搜索树的最近公共祖先LeetCode701.二叉搜索树中的插入操作LeetCode450.删除二叉搜索树中的节点一、LeetCode235.二叉
- 一周热点:微软攻克语音输入、文本输出难题-Phi-4-multimodal
数据分析能量站
机器学习人工智能
微软Phi-4-multimodal模型是人工智能领域的一个重要进展,它标志着微软在多模态人工智能技术上的突破。以下是对该模型的详细解释:模型概述微软Phi-4-multimodal是一个能够同时处理文本、图像和语音的多模态大型语言模型。它通过创新的架构和训练方法,实现了在不同模态之间的无缝交互,为用户提供更自然、更智能的交互体验。模型架构该模型采用多模态Transformer架构,通过LoRA(
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多