CodeForces-1159B-Expansion coefficient of the array

B. Expansion coefficient of the array
time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output

Let's call an array of non-negative integers a1,a2,,an a k-extension for some non-negative integer if for all possible pairs of indices 1i,jn the inequality k|ij|min(ai,aj) is satisfied. The expansion coefficient of the array is the maximal integer k such that the array is a k-extension. Any array is a 0-expansion, so the expansion coefficient always exists.

You are given an array of non-negative integers a1,a2,,an. Find its expansion coefficient.

Input

The first line contains one positive integer — the number of elements in the array a (2n300000). The next line contains non-negative integers a1,a2,,an, separated by spaces (0ai10^9).

Output

Print one non-negative integer — expansion coefficient of the array a1,a2,,an.

Examples
input

4

6 4 5 5

output
1
 
input

3

0 1 2

output
0
 
input

4

821 500 479 717

output
239
 
Note

In the first test, the expansion coefficient of the array [6,4,5,5] is equal to because |ij|min(ai,aj), because all elements of the array satisfy ai3. On the other hand, this array isn't a 2-extension, because 6=2|14|min(a1,a4)=5 is false.

In the second test, the expansion coefficient of the array [0,1,2] is equal to because this array is not a 1-extension, but it is 0-extension.

 

题解

对于数列 a1,a2,,an,分析其中任意一项ai,考虑所有的aj >= aiaj < ai的算在aj里面考虑了),则使得min(ai,aj) = ai,要使所有的j都满足k*|i-j| <= min(ai,aj) = ai,则对于ai来说,j应该尽量远离i,这样解出来的最大的k才是有用的(即对aik值的约束最紧)。显然最远的j应该是数列两端中的一端,但两端不一定大于ai。那怎么办呢?仔细一想,对于两端的情况,考虑最前端a1及最后端an

  1.  如果a1 >= ai,则对于当前ai来说,k要满足k <= ai/|i-1|(如果i == 1,则说明k值没有限制)。如果a1 < ai,则对于当前ai来说,k要满足k <= a1/|i-1| < ai/|i-1|
  2.  如果an >= ai,则对于当前ai来说,k要满足k <= ai/|i-n|(如果i == n,则说明k值没有限制)。如果an < ai,则对于当前ai来说,k要满足k <= an/|i-n| < ai/|i-n|
  3.  在所有大于等于aiaj中,k对于ai来说要满足k <= ai/|i-j|,而|i-j| <= |i-1||i-j| <= |i-n|,故ai/|i-1| <= ai/|i-j|ai/|i-n| <= ai/|i-j|

可见,对每项ai来说,考虑两端的项所解出来的k值必定有一项是有用的(即对aik值的约束最紧)。

枚举每一项求解出来的有用的k值,再取最小即得到最优答案。

 

 1 #include 
 2 #include 
 3 #include 
 4 #include 
 5 #include <string.h>
 6 #include 
 7 #define re register
 8 #define il inline
 9 #define ll long long
10 #define ld long double
11 const ll MAXN = 1e6+5;
12 const ll INF = 1e9;
13 
14 //快读
15 il ll read()
16 {
17     char ch = getchar();
18     ll res = 0, f = 1;
19     while(ch < '0' || ch > '9')
20     {
21         if(ch == '-')   f = -1;
22         ch = getchar();
23     }
24     while(ch >= '0' && ch <= '9')
25     {
26         res = (res<<1) + (res<<3) + (ch-'0');
27         ch = getchar();
28     }
29     return res*f;
30 }
31 
32 ll a[MAXN];
33 
34 int main()
35 {
36     ll n = read();
37     for(re ll i = 1; i <= n; ++i)
38     {
39         a[i] = read();
40     }
41     ll k = INF;
42     for(re ll i = 1; i <= n; ++i)
43     {
44         k = std::min(i==1?k:std::min(a[i],a[1])/(i-1),k);
45         k = std::min(i==n?k:std::min(a[i],a[n])/(n-i),k);
46     }
47     printf("%lld\n", k);
48     return 0;
49 }
View Code

 

 

你可能感兴趣的:(CodeForces-1159B-Expansion coefficient of the array)