ios开发之常用算法设计方法 递归

递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。

能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。

【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。

斐波那契数列为:0、1、1、2、3、……,即:

fib(0)=0;

fib(1)=1;

fib(n)=fib(n-1)+fib(n-2) (当n>1时)。

写成递归函数有:
  int fib(int n)
  { if (n==0) return 0;
  if (n==1) return 1;
  if (n>1) return fib(n-1)+fib(n-2);
  }
复制代码

递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。

在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。

在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。

由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。

【问题】 组合问题

问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1
  (4)5、3、2 (5)5、3、1 (6)5、2、1
  (7)4、3、2 (8)4、3、1 (9)4、2、1
  (10)3、2、1
复制代码

分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。

【程序】
  # include
  # define MAXN 100
  int a[MAXN];
  void comb(int m,int k)
  { int i,j;
  for (i=m;i>=k;i--)
  { a[k]=i;
  if (k>1)
  comb(i-1,k-1);
  else
  { for (j=a[0];j>0;j--)
  printf(“%4d”,a[j]);
  printf(“\n”);
  }
  }
  }
  void main()
  { a[0]=3;
  comb(5,3);
  }
复制代码

【问题】 背包问题

问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。

设n件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。

假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。

对于第i件物品的选择考虑有两种可能:

(1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。

(2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。

按以上思想写出递归算法如下:
 
 try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)
  { /考虑物品i包含在当前方案中的可能性/
  if(包含物品i是可以接受的)
  { 将物品i包含在当前方案中;
  if (i try(i+1,tw+物品i的重量,tv);
  else
  /又一个完整方案,因为它比前面的方案好,以它作为最佳方案/
  以当前方案作为临时最佳方案保存;
  恢复物品i不包含状态;
  }
  /考虑物品i不包含在当前方案中的可能性/
  if (不包含物品i仅是可男考虑的)
  if (i try(i+1,tw,tv-物品i的价值);
  else
  /又一个完整方案,因它比前面的方案好,以它作为最佳方案/
复制代码

以当前方案作为临时最佳方案保存;

为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:
  物品 0 1 2 3
  重量 5 3 2 1
  价值 4 4 3 1
复制代码

并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。
  按上述算法编写函数和程序如下:

【程序】
 
 # include
  # define N 100
  double limitW,totV,maxV;
  int option[N],cop[N];
  struct { double weight;
  double value;
  }a[N];
  int n;
  void find(int i,double tw,double tv)
  { int k;
  /考虑物品i包含在当前方案中的可能性/
  if (tw+a.weight<=limitW)
  { cop=1;
  if (i else
  { for (k=0;k option[k]=cop[k];
  maxv=tv;
  }
  cop=0;
  }
  /考虑物品i不包含在当前方案中的可能性/
  if (tv-a.value>maxV)
  if (i else
  { for (k=0;k option[k]=cop[k];
  maxv=tv-a.value;
  }
  }
  void main()
  { int k;
  double w,v;
  printf(“输入物品种数\n”);
  scanf((“%d”,&n);
  printf(“输入各物品的重量和价值\n”);
  for (totv=0.0,k=0;k { scanf(“%1f%1f”,&w,&v);
  a[k].weight=w;
  a[k].value=v;
  totV+=V;
  }
  printf(“输入限制重量\n”);
  scanf(“%1f”,&limitV);
  maxv=0.0;
  for (k=0;k find(0,0.0,totV);
  for (k=0;k if (option[k]) printf(“%4d”,k+1);
  printf(“\n总价值为%.2f\n”,maxv);
  }
复制代码

作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。

同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。

【程序】
 
 # include
  # define N 100
  double limitW;
  int cop[N];
  struct ele { double weight;
  double value;
  } a[N];
  int k,n;
  struct { int flg;
  double tw;
  double tv;
  }twv[N];
  void next(int i,double tw,double tv)
  { twv.flg=1;
  twv.tw=tw;
  twv.tv=tv;
  }
  double find(struct ele *a,int n)
  { int i,k,f;
  double maxv,tw,tv,totv;
  maxv=0;
  for (totv=0.0,k=0;k totv+=a[k].value;
  next(0,0.0,totv);
  i=0;
  While (i>=0)
  { f=twv.flg;
  tw=twv.tw;
  tv=twv.tv;
  switch(f)
  { case 1: twv.flg++;
  if (tw+a.weight<=limitW)
  if (i { next(i+1,tw+a.weight,tv);
  i++;
  }
  else
  { maxv=tv;
  for (k=0;k cop[k]=twv[k].flg!=0;
  }
  break;
  case 0: i--;
  break;
  default: twv.flg=0;
  if (tv-a.value>maxv)
  if (i { next(i+1,tw,tv-a.value);
  i++;
  }
  else
  { maxv=tv-a.value;
  for (k=0;k cop[k]=twv[k].flg!=0;
  }
  break;
  }
  }
  return maxv;
  }
  void main()
  { double maxv;
  printf(“输入物品种数\n”);
  scanf((“%d”,&n);
  printf(“输入限制重量\n”);
  scanf(“%1f”,&limitW);
  printf(“输入各物品的重量和价值\n”);
  for (k=0;k scanf(“%1f%1f”,&a[k].weight,&a[k].value);
  maxv=find(a,n);
  printf(“\n选中的物品为\n”);
  for (k=0;k if (option[k]) printf(“%4d”,k+1);
  printf(“\n总价值为%.2f\n”,maxv);
  }
复制代码

你可能感兴趣的:(ios开发之常用算法设计方法 递归)