- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- YOLOv11 | SAConv与C3k2融合架构技术详解,替换传统下采样Conv
wei子
技术杂谈YOLO人工智能
YOLOv11|SAConv与C3k2融合架构技术详解,替换传统下采样Conv1.核心创新与技术价值1.1突破性设计理念本文提出的SAConv(SwitchableAtrousConvolution)可切换空洞卷积结合C3k2二次创新模块,在YOLOv11中实现了三大突破:动态感受野调节:支持[1,2,3]三种空洞率的实时切换多尺度特征融合:跨层级特征的无损传递计算效率优化:相比传统空洞卷积节省3
- RT-DETR改进|爆改模型|涨点|使用VMamba作为骨干网络(附代码+修改教程)
爆改模型
网络深度学习人工智能计算机视觉
一、文本介绍本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(VisualStateSpaceModel)替换ResNet作为RT-DETR的骨干网络。VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实现线性复杂度。为了解决方向敏感性问题,VMamba引入
- 52-【JavaScript-Day 52】告别“野路子”代码:ESLint、Prettier与Web安全入门
吴师兄大模型
javascript开发语言ecmascriptjava人工智能大模型ESLint
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- 非结构化数据真“野”?聊聊AI处理它时踩过的那些坑
Echo_Wish
Python进阶人工智能
非结构化数据真“野”?聊聊AI处理它时踩过的那些坑在AI圈子里有一句“老话”:真正的世界,是非结构化的。图像、音频、视频、文本、传感器原始数据……这些在数据库里没个字段、没个主键的家伙,占据了全世界80%以上的数据量。咱们都喜欢说“数据是新时代的石油”,但很少人说:非结构化数据,就是粘稠未提炼的原油——处理它,才是最累的活。这篇文章,我不想跟你讲那些“炫技”的论文和模型,而是从一个一线AI工程师的
- 【Pytorch学习笔记】模型模块09——VGG详解
越轨
Pytorch学习笔记pytorch学习笔记深度学习人工智能python
一、VGG核心设计原理小卷积核堆叠用多层3×3卷积替代大卷积核(如5×5/7×7)数学原理:2层3×3卷积感受野等效于5×5:RFout=(RFin−1)×stride+KRF_{out}=(RF_{in}-1)\timesstride+KRFout=(RFin−1)×stride+K参数量对比:3层3×3卷积(3×(32C2)=27C23×(3^2C^2)=27C^23×(32C2)=27C2)
- 第6章:学徒毕业考试:模型评估的四把尺
白嫖不白嫖
深度求索-DeepSeek人工智能机器学习
第6章:学徒毕业考试:模型评估的四把尺引言:从厨房毕业到AI模型评估想象一下,你是一位刚完成30天特训的厨房学徒。师傅给你安排了一场“毕业考试”:做一道招牌菜——番茄炒蛋,由10位挑剔的顾客盲测品鉴(顾客不知道谁做的菜)。他们会根据“是否好吃”给出打分:好吃(✅)或难吃(❌)。这场考试的目的,是验证你是否能真正掌握菜谱精髓,避免成为“死记硬背的书呆子”(过拟合)或“随意发挥的野路子”(欠拟合)。在
- Python训练营---DAY54
2501_91182850
Python训练营python开发语言深度学习
DAY54Inception网络及其思考知识点回顾:传统计算机视觉发展史:LeNet-->AlexNet-->VGGNet-->nceptionNet-->ResNetinception模块和网络特征融合方法阶段性总结:逐元素相加、逐元素相乘、concat通道数增加等感受野与卷积核变体:深入理解不同模块和类的设计初衷作业:一次稍微有点学术感觉的作业:对inception网络在cifar10上观察精
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- YOLOv12改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv12改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv12的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv12的改进过程中,针对目标
- Incremental Transformer Structure EnhancedImage Inpainting with Masking Positional Encoding笔记
毕设做完了吗?
transformer笔记深度学习
摘要:近年来,图像修复取得了重大进展。然而,恢复具有生动纹理和合理结构的损坏图像仍然具有挑战性。由于卷积神经网络(CNN)的感受野有限,一些特定方法只能处理常规纹理,同时失去整体结构。另一方面,基于注意力的模型可以更好地学习结构恢复的长程依赖性,但它们受到大图像尺寸推理的大量计算的限制。为了解决这些问题,我们建议利用一个额外的结构恢复器来促进图像的增量修复。所提出的模型在固定的低分辨率草图空间中,
- 深度学习进阶:卷积神经网络(CNN)原理与实战
软考和人工智能学堂
#深度学习人工智能#DeepSeek快速入门深度学习cnn人工智能
1.卷积神经网络概述卷积神经网络(ConvolutionalNeuralNetworks,CNN)是深度学习中专门用于处理网格状数据(如图像、语音、视频)的神经网络架构。与传统全连接网络相比,CNN具有三大核心思想:局部感受野:每个神经元只与输入数据的局部区域连接权值共享:同一特征检测器在不同位置使用相同的参数空间下采样:通过池化操作逐步降低数据维度这些特性使CNN能够高效处理高维数据,并保持对平
- Python datetime库【日期和时间处理库】全面讲解与示例
老胖闲聊
Python库大全python网络开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- CNN中的感受野
AI扶我青云志
cnn人工智能
今天在牛客刷机器学习的时候,看到了感受野的概念,学习过程中可能没有注意到,现在补一下这个概念及作用。感受野(ReceptiveField)是卷积神经网络(CNN)中的核心概念,指网络中某一层特征图上的单个神经元在输入图像上所能“看到”或影响的区域范围。它决定了神经元处理信息的空间尺度,直接影响网络对局部细节和全局语义的捕捉能力。以下是其详细解析:一、定义与核心概念基本定义感受野是特征图上单个像素点
- YoloV8改进策略:Block改进|MKP,多尺度卷积核级联结构,增强感受野适应性|即插即用|AAAI 2025
AI智韵
YOLO目标跟踪人工智能
文章目录1论文信息2创新点2.1特征互补映射模块(FCM)2.2多内核感知单元(MKP)2.3冗余驱动的轻量化设计3方法3.1整体架构3.2MKP单元优化3.3MKP设计优势4效果4.1性能对比实验4.2消融实验4.3效率优势5论文总结代码完整代码Pzconv模块代码详解辅助函数和基础模块Pzconv模块核心实现测试代码关键设计解析1.多尺度特征提取2.深度可分离卷积3.特征变换与非线性激活4.残
- 【Block总结】MKP,多尺度卷积核级联结构,增强感受野适应性|AAAI 2025
AI浩
目标跟踪人工智能计算机视觉
1论文信息FBRT-YOLO(FasterandBetterforReal-TimeAerialImageDetection)是由北京理工大学团队提出的专用于航拍图像实时目标检测的创新框架,发表于AAAI2025。论文针对航拍场景中小目标检测的核心难题展开研究,重点解决小目标因分辨率低、背景干扰多导致的定位困难,以及现有方法在实时性与精度间的失衡问题。航拍图像目标检测是无人机、遥感监测等应用的关键
- 井川里予瓜pdf完整版
洋洋654
pdf
井川里予瓜pdf完整版下载链接:链接:https://pan.quark.cn/s/c75455d6be60在网红文化盛行的当下,井川里予无疑是一位备受瞩目的人物。这位2001年出生于广东湛江的姑娘,凭借独特风格在网络世界掀起波澜,其发展轨迹深刻映射出网红经济与大众文化的复杂交织。井川里予原名庞欣然,大学就读于浙江经济职业技术学院。2018年,她将名字“野”字拆分,加上“井川”,以独特网名进驻抖音
- 深度学习网络架构与应用:CNN、RNN、GAN三大核心模型解析
you的日常
人工智能大语言模型深度学习人工智能cnnrnngan神经网络生成对抗网络
深度学习领域三大核心神经网络架构——卷积神经网络(CNN)、循环神经网络(RNN)及生成对抗网络(GAN)各具特色,共同推动着人工智能技术的边界。CNN凭借其局部感受野和参数共享机制,在图像分类与目标检测领域展现出卓越性能;RNN通过循环结构有效处理序列数据,在文本生成等任务中发挥重要作用;GAN则利用生成器与判别器的对抗博弈,生成逼真数据。这三大架构在各自领域不断演进,形成了一系列经典模型与创新
- python实现将野燕麦优化算法与OpenCV结合
babyai997
python算法opencv
野燕麦优化算法:一种基于自然启发的元启发式优化方法引言野燕麦优化算法(WildOatOptimization,WOO)是一种新兴的元启发式优化算法,灵感来源于野燕麦种子在自然环境中的传播机制。近年来,随着优化算法在计算机视觉、机器学习等领域的广泛应用,基于自然现象的元启发式算法受到越来越多研究者的关注。本文将详细介绍野燕麦优化算法的基本原理、实现方法,并探讨如何将其与OpenCV在Python环境
- Python spaCy 库【NLP处理库】的基础知识讲解
老胖闲聊
Python库大全python自然语言处理开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python Arrow 库:优雅处理日期与时间的终极指南
老胖闲聊
Python库大全pythonjava服务器
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python wxPython 【GUI库】简介
老胖闲聊
Python库大全python开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python jieba库简介
老胖闲聊
Pythonpython开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python aiohttp 全面指南:异步HTTP客户端/服务器框架
老胖闲聊
Pythonpythonhttp服务器
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- 从代数到几何:向量点乘与叉乘的定义、推导及几何意义
斐夷所非
mathematics向量点乘与叉乘
注:本文为“向量点乘与叉乘”相关文章合辑。图片清晰度受引文原图所限。略作重排,未整理去重。如有内容异常,请看原文。向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读-牧野-于2016-09-0220:50:34发布一、向量基础概念向量是由nnn个实数组成的一个nnn行1列(n×1n\times1n×1)或一个1行nnn列(1×n1\timesn1×n)的有序数组。二、向量点乘(内积、数量积)
- 【目标检测】backbone究竟有何关键作用?
猫天意
目标检测目标检测人工智能计算机视觉CV
backbone的核心在于能为检测提供若干种感受野大小和中心步长的组合,以满足对不同尺度和类别的目标检测。
- 【目标检测】检测网络中neck的核心作用
猫天意
目标检测人工智能计算机视觉CV基础
1.neck最主要的作用就是特征融合,融合就是将具有不同大小感受野的特征图进行了耦合,从而增强了特征图的表达能力。2.neck决定了head的数量,进而潜在决定了不同尺度样本如何分配到不同的head,这一点可以看做是将整个网络的多尺度目标学习的负担,分散到了多个层级的特征图上。3.neck将来自于backbone上的多个层级的特征图进行融合加工,增强其表达能力的同时,输出加工后并具有相同宽度的特征
- 一文读懂Vision Transformer图像分类原理与实现
t0_54program
生成对抗网络人工智能神经网络个人开发
在图像分类领域,卷积神经网络(CNNs)长期占据主导地位,因其具备平移不变性和局部受限感受野等归纳偏置。然而,Transformer的出现为图像分类带来了新的思路。本文将详细探讨Transformer架构在图像分类中的微调,即VisionTransformer(ViT)的工作原理、重要细节以及具体实现。ViT架构简述图像分块与嵌入首先,将图像分割成多个图像块(patches),这些图像块类似于文本
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag