[再寄小读者之数学篇](2014-06-22 最大值点处导数为零的应用 [中国科学技术大学2012 年高等数学B考研试题])

设 $f(x)$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=f(1)=0$, $f\sex{\cfrac{1}{2}}=1$. 证明:对于任意的实数 $\lm$, 一定存在 $\xi\in (0,1)$, 使得 $$\bex f'(\xi)-\lm f(\xi)+\lm f(\xi)=1. \eex$$

 

证明: 设 $F(x)=e^{-\lm x}[f(x)-x]$, 则 $$\bex F(0)=0,\quad F\sex{\cfrac{1}{2}}=\cfrac{e^{-\cfrac{\lm}{2}}}{2}>0, \quad F(1)=-e^{-\lm}<0. \eex$$ 故 $F(x)$ 在 $[0,1]$ 上的最大值只能在 $(0,1)$ 内的某 $\xi$ 处取得, 而 $$\bex 0=F'(\xi)=e^{-\lm \xi} \sez{-\lm f(\xi)+\lm \xi+f'(\xi)-1}. \eex$$

你可能感兴趣的:(2012)