通常而言我们会通过Python编写代码训练Tensorflow,但是我们训练的数据需要实际应用起来,本文会介绍如何通过Python训练Tensorflow,训练的结果在Android上应用,当前也可以通过传输数据给服务端去识别,然后返回数据,但是这种方式实时性较差,需要上传识别数据,然后等待返回数据,在某些场景下也是适用,可以查看下面的Java中调用
文章。
实战
实战的内容是基于MNIST实验,在Android平台实现识别功能。
本文是基于MNIST实验,如果还没有做过MNIST实验,那么可以先看我之前2篇文章
《机器学习Tensorflow笔记1:Hello World到MNIST实验》
《机器学习Tensorflow笔记2:超详细剖析MNIST实验》
1. Python保存训练模型
在MNIST实验中,我们是训练完成模型后马上就调用测试代码,如果我们要应用起来,就不可能在移动端去训练,我们应该把训练好的模型放在手机里面,或者通过URL下载到手机里面,所以我们需要保存我们的训练的模型。
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import gzip
import sys
import struct
import numpy
from tensorflow.python.framework import graph_util
from tensorflow.python.platform import gfile
train_images_file = "MNIST_data/train-images-idx3-ubyte.gz"
train_labels_file = "MNIST_data/train-labels-idx1-ubyte.gz"
t10k_images_file = "MNIST_data/t10k-images-idx3-ubyte.gz"
t10k_labels_file = "MNIST_data/t10k-labels-idx1-ubyte.gz"
def read32(bytestream):
# 由于网络数据的编码是大端,所以需要加上>
dt = numpy.dtype(numpy.int32).newbyteorder('>')
data = bytestream.read(4)
return numpy.frombuffer(data, dt)[0]
def read_labels(filename):
with gzip.open(filename) as bytestream:
magic = read32(bytestream)
numberOfLabels = read32(bytestream)
print(magic)
print(numberOfLabels)
labels = numpy.frombuffer(bytestream.read(numberOfLabels), numpy.uint8)
data = numpy.zeros((numberOfLabels, 10))
for i in xrange(len(labels)):
data[i][labels[i]] = 1
bytestream.close()
return data
def read_images(filename):
# 把文件解压成字节流
with gzip.open(filename) as bytestream:
magic = read32(bytestream)
numberOfImages = read32(bytestream)
rows = read32(bytestream)
columns = read32(bytestream)
images = numpy.frombuffer(bytestream.read(numberOfImages * rows * columns), numpy.uint8)
images.shape = (numberOfImages, rows * columns)
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
bytestream.close()
print(magic)
print(numberOfImages)
print(rows)
print(columns)
return images
# 解析labels的内容,train_labels包含了60000个数字标签,返回60000个数字标签的数组
train_labels = read_labels(train_labels_file)
# print(labels)
train_images = read_images(train_images_file)
test_labels = read_labels(t10k_labels_file)
# print(labels)
test_images = read_images(t10k_images_file)
import tensorflow as tf
x = tf.placeholder("float", [None, 784.],name='input/x_input')
W = tf.Variable(tf.zeros([784., 10.]))
b = tf.Variable(tf.zeros([10.]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder("float",name='input/y_input')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1200):
batch_xs = train_images[50 * i:50 * i + 50]
batch_ys = train_labels[50 * i:50 * i + 50]
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1, output_type='int32', name='output'),
tf.argmax(y_, 1, output_type='int32'))
# correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: test_images, y_: test_labels})
# 保存训练好的模型
# 形参output_node_names用于指定输出的节点名称,output_node_names=['output']对应pre_num=tf.argmax(y,1,name="output"),
output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=['output'])
with tf.gfile.FastGFile('model/mnist.pb', mode='wb') as f: # ’wb’中w代表写文件,b代表将数据以二进制方式写入文件。
f.write(output_graph_def.SerializeToString())
sess.close()
通过简单的修改代码,就可以轻松实现保存训练模型到本地。
测试导出的模型是否可用
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import tensorflow as tf
import numpy as np
from PIL import Image
#模型路径
model_path = 'model/mnist.pb'
#测试图片
testImage = Image.open("data/test_image.png")
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
with open(model_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
tf.import_graph_def(output_graph_def, name="")
with tf.Session() as sess:
tf.global_variables_initializer().run()
# x_test = x_test.reshape(1, 28 * 28)
input_x = sess.graph.get_tensor_by_name("input/x_input:0")
output = sess.graph.get_tensor_by_name("output:0")
#对图片进行测试
testImage=testImage.convert('L')
testImage = testImage.resize((28, 28))
test_input=np.array(testImage)
test_input = test_input.reshape(1, 28 * 28)
pre_num = sess.run(output, feed_dict={input_x: test_input})#利用训练好的模型预测结果
print('模型预测结果为:',pre_num)
2. 配置项目
- 在app目录对于的
build.gradle
添加Gradle依赖,由于so文件很大,所以建议只支持arm,引入Tensorflow后,apk仅仅只增加了4.9MB
,如果人工智能当做重要的业务,这个成本是值得的,后续我也会编写Tensorflow Lite
的文章,体积更小,更加适合移动设备。
android {
//...
buildTypes {
debug {
minifyEnabled false
debuggable = false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
ndk {
abiFilters "armeabi-v7a","x86"
}
}
release {
minifyEnabled false
debuggable = false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
ndk {
abiFilters "armeabi-v7a"
}
}
}
}
dependencies {
implementation 'org.tensorflow:tensorflow-android:1.8.0'
}
- 把上面保存好的训练模型放到Android项目中的
assets
文件夹中,同时把需要测试的图片放到drawable
文件夹下。
├── main
│ ├── AndroidManifest.xml
│ ├── assets
│ │ └── mnist.pb
│ └── res
│ ├── drawable
│ │ └── test_image.png
测试模型
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
val bitmap = BitmapFactory.decodeResource(resources, R.drawable.test_image)
val tfi = TensorFlowInferenceInterface(assets, "mnist.pb")
val inputData = bitmapToFloatArray(bitmap, 28f, 28f)
tfi.feed("input/x_input", inputData, 1, 784)
val outputNames = arrayOf("output")
tfi.run(outputNames)
// 用于存储模型的输出数据
val outputs = IntArray(1)
tfi.fetch(outputNames[0], outputs)
imageView.setImageBitmap(bitmap)
textView.text = "结果为:" + outputs[0]
}
/**
* 将bitmap转为(按行优先)一个float数组,并且每个像素点都归一化到0~1之间。
* @param bitmap 输入被测试的bitmap图片
* @param rx 将图片缩放到指定的大小(列)->28
* @param ry 将图片缩放到指定的大小(行)->28
* @return 返回归一化后的一维float数组 ->28*28
*/
private fun bitmapToFloatArray(bitmap: Bitmap, rx: Float, ry: Float): FloatArray {
var height = bitmap.height
var width = bitmap.width
// 计算缩放比例
val scaleWidth = rx / width
val scaleHeight = ry / height
val matrix = Matrix()
matrix.postScale(scaleWidth, scaleHeight)
val bitmap = Bitmap.createBitmap(bitmap, 0, 0, width, height, matrix, true)
height = bitmap.height
width = bitmap.width
val result = FloatArray(height * width)
var k = 0
for (row in 0 until height) {
for (col in 0 until width) {
val argb = bitmap.getPixel(col, row)
val r = Color.red(argb)
val g = Color.green(argb)
val b = Color.blue(argb)
//由于是灰度图,所以r,g,b分量是相等的。
assert(r == g && g == b)
result[k++] = r / 255.0f
}
}
return result
}
}
布局文件
结果
源码
https://github.com/taoweiji/TensorflowAndroidDemo