七周速学数据分析(业务知识篇)

七周速学数据分析(业务知识篇)_第1张图片

在前面我们提到了Excel、数据可视化、数据分析思维、数据库知识,统计学知识,但是有了这些知识还不是足够了,还需要学习Python/R和业务知识,因为数据分析是针对各种各样的业务的,但是很多人对于这些业务不是很清楚的,所以如果想加入数据分析行业的时候一定要多多了解一些业务的知识,这样才能够更好的分析数据。

不过,很多人对于业务知识不是怎么重视的,甚至嗤之以鼻,其实,对于数据分析师来说,业务的了解比数据方法论更重要。业务的种类有很多,数据分析师对于这些知识都不是很了解,所以有时候不能够从全面的角度进行观察数据,所以说,业务知识的了解都是很重要的。数据分析人员可以选择性的挑选部分内容。了解业务的数据分析师在职场发展上会更加顺利。

下面就给大家总结几个互联网领域的指标和业务模型,这些互联网领域的业务知识都是通用的框架。

首先说的是电商和消费模型,所谓的电商和消费模型是以商品的交易、零售、购买搭建而起。包括客单价、复购率、回购率、退货率、购物篮大小、进销存等商品概念。

其次说的是市场营销模型,一般来说,市场营销模型是以传统的市场营销方法论为基础,围绕用户的生命周期建立框架。包括用户生命周期,生命周期价值、用户忠诚指数、用户流失指数、用户RFM价值等。

然后说流量模型,流量模型的来源就是从早期的网站分析发展而来,以互联网的流量为核心。包括浏览量曝光率、病毒传播周期、停留时间等内容。

接着说产品运营模型,产品运营模型一般是以移动终端为主体,围绕某种准则搭建起数据框架。包括用户获取、用户活跃、用户留存、营收、传播,以及细分指标。

最后说的是用户行为模型,一般来说用户行为模型就是通过用户在产品功能上的使用,获得精细的人群维度,以此作为分析模型。包括用户偏好、用户兴趣、用户响应率、用户画像、用户分层等内容。

由此可见,在业务知识之外的业务层面的沟通也很重要。业务学习没有捷径,虽然掌握了诸多模型,但是不同行业间的业务也会给数据分析师设立门槛,想进入这个门槛不是一件容易的事情,这些都会影响到分析报告的质量。

以上的内容就是小编为大家解答一下这个问题,通过上述的内容不难发现业务知识的学习是一个比较重要的事情,大家在学习业务方面的时候可以多多关注我们的文章,这样才能够学到更多的知识,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。

你可能感兴趣的:(七周速学数据分析(业务知识篇))