【数据结构与算法 - Swift实现】15 - 图表 (Graph)

图是由顶点和顶点之间边组成的一种数据结构。如下图所示:

【数据结构与算法 - Swift实现】15 - 图表 (Graph)_第1张图片

加权图

在加权图中,每一条边都有一个权重,我们可以利用这个权重来计算除图中两个顶点的最小路径。

假设有以下虚构的航班路线路:

【数据结构与算法 - Swift实现】15 - 图表 (Graph)_第2张图片

图中顶点代表一个地点,边代表从一个地点到另外一个地点的路线,而权重代表机票的费用。根据这个图,我们可以计算出从武汉到纽约机票最少的路线。

有向图

图的边除了可以有权重之外,还可以有方向,而且可以是双向或者是单向的。如下图:

【数据结构与算法 - Swift实现】15 - 图表 (Graph)_第3张图片

无向图

我们可以把无向图看作是一个所有边都是双向的有向图。如下图:

【数据结构与算法 - Swift实现】15 - 图表 (Graph)_第4张图片

代码实现

因为图有顶点和边组成,我们首先定义好顶点和边。

顶点和边

struct Vertex {
    let index: Int
    let value: T
}

extension Vertex: Hashable {
    var hashValue: Int {
        return index.hashValue
    }
    
    static func == (lhs: Vertex, rhs: Vertex) -> Bool {
        return lhs.index == rhs.index
    }
}

extension Vertex: CustomStringConvertible {
    var description: String {
        return "\(index): \(value)"
    }
}

Vertex 定义为泛型,index 为顶点被添加到图中的先后顺序,value 为顶点所包含的值。因为在后面的实现中,顶点要作为字典中的 key,所以实现了 Hashable 协议。最后实现了 CustomStringConvertible

struct Edge {
    let source: Vertex
    let destination: Vertex
    let weight: Double?
}

source 表示边的起点,destination 表示边的终点,weight 是边的权重。

Graph 协议

图的实现方式有两种:邻接表邻接矩阵。在用邻接表和邻接矩阵实现图之前,我们先创建一个 Graph 协议,然后在实现的时候遵循这个协议。

enum EdgeType {
    case directed
    case undirected
}

protocol Graph {
    associatedtype Element
    
    // 创建顶点
    func createVertex(value: Element) -> Vertex
    
    // 在两个顶点中添加有向的边
    func addDirectedEdge(from source: Vertex,
                         to destination: Vertex,
                         weight: Double?)
    
    // 在两个顶点中添加无向的边
    func addUndirectedEdge(between source: Vertex,
                           and destination: Vertex,
                           weight: Double?)
    
    // 根据边的类型在两个顶点中添加边
    func addEdge(_ edge: EdgeType,
                 from source: Vertex,
                 to destination: Vertex,
                 weight: Double?)
    
    // 返回从某个顶点发出去的所有边
    func edges(from source: Vertex) -> [Edge]
    
    // 返回从一个顶点到另个顶点的边的权重
    func weight(from source: Vertex,
                to destination: Vertex) -> Double?
}

因为边分有向和无向,所以先定义一个 EdgeTypeGraph 的代码解释请看注释。

邻接表

首先我们看如何用邻接表来实现图。

final class AdjacencyList {
    private var adjacencies: [Vertex: [Edge]] = [:]
    init() { }
}
extension AdjacencyList: Graph {
    func createVertex(value: T) -> Vertex {
        let vertex = Vertex(index: adjacencies.count, value: value)
        adjacencies[vertex] = []
        return vertex
    }
    
    func addDirectedEdge(from source: Vertex, to destination: Vertex, weight: Double?) {
        let edge = Edge(source: source, destination: destination, weight: weight)
        adjacencies[source]?.append(edge)
    }
    
    func edges(from source: Vertex) -> [Edge] {
        return adjacencies[source] ?? []
    }
    
    func weight(from source: Vertex, to destination: Vertex) -> Double? {
        return edges(from: source)
            .first { $0.destination == destination }?
            .weight
    }
}
extension AdjacencyList: CustomStringConvertible {
    var description: String {
        var result = ""
        for (vertex, edges) in adjacencies {
            var edgeString = ""
            for (index, edge) in edges.enumerated() {
                if index < edges.count - 1 {
                    edgeString.append("\(edge.destination), ")
                } else {
                    edgeString.append("\(edge.destination)")
                }
            }
            result.append("\(vertex) --> [ \(edgeString) ]\n")
        }
        return result
    }
}

我们用一个字典 adjacencies 来存储从某个顶点发出的边。

然后是实现 Graph 协议,这里只实现了四个方法,剩下的两个方法,可以直接在 Graph 提供默认的实现:

extension Graph {
    // 在两个顶点中添加无向的边,也就相当于在两个顶点之间互相添加有向图
    func addUndirectedEdge(between source: Vertex,
                           and destination: Vertex,
                           weight: Double?) {
        addDirectedEdge(from: source, to: destination, weight: weight)
        addDirectedEdge(from: destination, to: source, weight: weight)
    }
    
    // 根据边的类型在两个顶点中添加边,可以直接根据边的类型调用协议里的其他方法来实现
    func addEdge(_ edge: EdgeType,
                 from source: Vertex,
                 to destination: Vertex,
                 weight: Double?) {
        switch edge {
        case .directed:
            addDirectedEdge(from: source, to: destination, weight: weight)
        case .undirected:
            addUndirectedEdge(between: source, and: destination, weight: weight)
        }
    }
}

最后是实现了 CustomStringConvertible 协议,在打印的时候以这种格式显示出来:顶点 --> [ 从顶点出发的所有终点 ],例如 4: 香港 --> [ 2: 深圳, 5: 纽约 ]

以文章开头的加权图为例,测试一下我们写的代码:

let graph = AdjacencyList()

let wuHan = graph.createVertex(value: "武汉")
let shangHai = graph.createVertex(value: "上海")
let shenZhen = graph.createVertex(value: "深圳")
let beiJing = graph.createVertex(value: "北京")
let hongKong = graph.createVertex(value: "香港")
let newYork = graph.createVertex(value: "纽约")

graph.addEdge(.undirected, from: wuHan, to: shangHai, weight: 300)
graph.addEdge(.undirected, from: wuHan, to: shenZhen, weight: 500)
graph.addEdge(.undirected, from: shangHai, to: shenZhen, weight: 700)
graph.addEdge(.undirected, from: shangHai, to: beiJing, weight: 600)
graph.addEdge(.undirected, from: shenZhen, to: beiJing, weight: 1000)
graph.addEdge(.undirected, from: shenZhen, to: hongKong, weight: 200)
graph.addEdge(.undirected, from: beiJing, to: newYork, weight: 6000)
graph.addEdge(.undirected, from: hongKong, to: newYork, weight: 5000)

print(graph)

// 结果
4: 香港 --> [ 2: 深圳, 5: 纽约 ]
5: 纽约 --> [ 3: 北京, 4: 香港 ]
2: 深圳 --> [ 0: 武汉, 1: 上海, 3: 北京, 4: 香港 ]
0: 武汉 --> [ 1: 上海, 2: 深圳 ]
1: 上海 --> [ 0: 武汉, 2: 深圳, 3: 北京 ]
3: 北京 --> [ 1: 上海, 2: 深圳, 5: 纽约 ]

邻接矩阵

邻接矩阵用一个正方形的矩阵来表示一个图。矩阵由一个二维数组组成。matrix[1][2] 对应的值是在索引为 1 的顶点到索引为 2 的顶点的边的权重。

以下面这个有向航空票价图为例:

【数据结构与算法 - Swift实现】15 - 图表 (Graph)_第5张图片

我们可以得到一个矩阵图如下:

【数据结构与算法 - Swift实现】15 - 图表 (Graph)_第6张图片

左边顶点前面的数字代表顶点被加入图时的位置,右边行号表示出发点,列号表示终点。例如:

  • [0][1] 代表武汉到深圳的票价为 300;
  • [2][1] 代表深圳到上海的票价为 700。
代码实现
final class AdjacencyMatrix {
    private var vertices: [Vertex] = []
    private var weights: [[Double?]] = []
    init() { }
}
extension AdjacencyMatrix: Graph {
    func createVertex(value: T) -> Vertex {
        let vertex = Vertex(index: vertices.count, value: value)
        vertices.append(vertex)
        for i in 0.., to destination: Vertex, weight: Double?) {
        weights[source.index][destination.index] = weight
    }
    
    func edges(from source: Vertex) -> [Edge] {
        var edges: [Edge] = []
        for column in 0.., to destination: Vertex) -> Double? {
        return weights[source.index][destination.index]
    }
}
extension AdjacencyMatrix: CustomStringConvertible {
    var description: String {
        let verticesDes = vertices.map { "\($0)" }
                          .joined(separator: "\n")
        var grid: [String] = []
        for i in 0..

vertices 存储所有的顶点,weights 存储所有边的权重。

Graph的协议只需实现四个方法即可,另外两个方法在邻接表那一部分已经提供默认的实现。

最后是实现了 CustomStringConvertible 协议,在打印的时候把所有边的权重显示出来,如果没有值,则显示 ø

以这一节的有向航空票价图为例,创建的图如下:

let graph = AdjacencyMatrix()

let wuHan = graph.createVertex(value: "武汉")
let shangHai = graph.createVertex(value: "上海")
let shenZhen = graph.createVertex(value: "深圳")
let beiJing = graph.createVertex(value: "北京")

graph.addDirectedEdge(from: wuHan, to: shangHai, weight: 300)
graph.addDirectedEdge(from: wuHan, to: shenZhen, weight: 500)
graph.addDirectedEdge(from: shangHai, to: beiJing, weight: 600)
graph.addDirectedEdge(from: shenZhen, to: shangHai, weight: 700)
graph.addUndirectedEdge(between: shenZhen, and: beiJing, weight: 1000)

print(graph)

结果如下图:

【数据结构与算法 - Swift实现】15 - 图表 (Graph)_第7张图片

性能分析

邻接表和邻接矩阵实现图的性能对比如下, V 代表顶点,E 代表边:

操作 邻接表 邻接矩阵
存储空间 O(V + E) O(V^2)
添加顶点 O(1) O(V^2)
添加边 O(1) O(1)
查找边和权重 O(V) O(1)

邻接表所需的存储空间小于邻接矩阵,邻接表可以直接存储顶点和边,而邻接矩阵需要用个二维数组来存储边,二维数组元素个数就等于顶点的个数,所以是O(V^2)

邻接表添加顶点,直接存入字典即可,所以是 O(1)。邻接矩阵添加顶点,需要在二维数组添加多一行和一列,时间复杂度至少是 O(V),如果矩阵由一个连续的内存区域存储,有可能是 O(V^2)

邻接表添加边,直接在字典中key对应的数组添加元素;邻接矩阵添加边,直接更改二维数组的其中一个元素,都是 O(1)

邻接表查找某条边和权重,需要找到从某个顶点出发的所有边,然后通过循环找到特定的边,所以最坏的情况下是 O(V)。邻接矩阵查找某条边和权重,能直接从二维数组中找到对应的元素,所以时间是 O(1)

邻接表和邻接矩阵,我们如何选择?如果我们的图中边的数量不多,选择邻接表,因为邻接矩阵所需的内存比较大。如果我们的图有很多边,选择邻接矩阵比较好,因为他在查找边和权重上速度较快。

完整代码 >>

参考资料

Data Structures and Algorithms in Swift --- raywenderlich.com,如果想看原版书籍,请点击链接购买。

欢迎加入我管理的Swift开发群:536353151

下一篇文章:【数据结构与算法 - Swift实现】16 - 广度优先搜索和深度优先搜索

你可能感兴趣的:(【数据结构与算法 - Swift实现】15 - 图表 (Graph))