- python opencv轮廓检测_python opencv中的不规则形状检测和测量
weixin_39584529
pythonopencv轮廓检测
正如我在评论中提到的那样,对于这个问题,分水岭似乎是一个很好的方法.但是当你回答时,定义标记的前景和背景是困难的部分!我的想法是使用形态梯度沿着冰晶获得良好的边缘并从那里开始工作;形态梯度似乎很有效.importnumpyasnpimportcv2img=cv2.imread('image.png')blur=cv2.GaussianBlur(img,(7,7),2)h,w=img.shape[:
- 【DuodooTEKr】 基于Python+OCR+DeepSeek的英国购物小票识别系统开发实战
邹工拆解甲方需求
风吟九宵Odoo18开源Duodoo开源人工智能物联网制造开源python
作者:Odoo技术开发/资深信息化负责人日期:2025年3月11日本方案从甲方信息化负责人视角,分析梳理现状,并给出代码开发案例。一、行业现状与痛点分析1.英国零售业数字化现状根据英国零售协会(BRC)2023年度报告显示:英国年均纸质小票签发量达78亿张87%的企业仍采用人工录入方式处理小票数据零售业每年因小票管理产生的直接成本超12亿英镑2.传统小票管理痛点数据孤岛问题:门店POS系统、财务系
- 牛客练习赛128(下)
筱姌
牛客比赛算法c++BFSDFS图论动态规划
Cidoai的平均数对题目描述登录—专业IT笔试面试备考平台_牛客网运行代码#include#includeusingnamespacestd;intmain(){intn,k;cin>>n>>k;inttotalAns=0;intrSum=0;vectorex,weights;for(inti=0;i>a>>b;if(bf(rSum+1,0);for(inti=0;i=ex[i];--j){f[
- OTSU算法 (大津算法)理解&代码
当代女大学生
机器学习python计算机视觉算法
OTSU算法:对图像进行二值化的算法介绍OTSU算法是一种自适应的阈值确定的方法,又称大津阈值分割法,是最小二乘法意义下的最优分割。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。从大津法的原
- C++设计模式-观察者模式:从基本介绍,内部原理、应用场景、使用方法,常见问题和解决方案进行深度解析
牵牛老人
C++专栏c++设计模式观察者模式
一、基本介绍1.1模式定义与核心思想观察者模式(ObserverPattern)是一种行为型设计模式,它定义了对象间一对多的依赖关系。当被观察对象(Subject)状态改变时,所有依赖它的观察者(Observer)都会自动收到通知并更新。这种模式类似于报纸订阅机制——报社发布新刊时,所有订阅者都会收到最新报纸。1.2模式价值体现解耦利器:将事件发布者与订阅者解耦,提升系统扩展性动态响应:支持运行时
- 用Python打造AI玩家:挑战2048,谁与争锋
穿梭的编织者
人工智能python
文章目录一、创作背景二、效果图三、准备工作1.安装Chrome和ChromeDriver2.安装Python库四、代码说明1.init_driver函数2.play_2048函数五、完整代码六、改进版本七、主要模块八、核心算法分析1.棋盘状态获取2.位置权重系统3.连续性评估4.单调性评估5.移动模拟系统九、评估系统1.评估标准2.决策机制十、性能优化1.延迟控制2.错误处理十一、完整代码编
- Python爬虫相关内容
猫猫头有亿点炸
python爬虫开发语言
一、打开源代码的方式鉴于时间过很久后我们可能会忘记的源代码位置所以写下以下文章便于实时查看:一般有两种方法打开源代码:第一是f12第二右键查看网页源代码二、特殊情况第三种情况当你用爬虫爬取内容的时候可能用xpath还是匹配不到任何结果因为页面可能会自动刷新所以使用xpath的时候匹配不到任何内容查找源代码的示例图片三、解决办法这个时候你可以先->f12(笔记本电脑fn+f12)再->ctrl+sh
- Ook密码快速辨认与解密
迷茫&&前行
密码解密Ook密码
一.Ook在线解密网站Ook解密1Ook解密2二.Ook密码辨认Ook密码是一种基于Ook语言的编程语言,由DavidMorgan-Mar设计,灵感来自TerryPratchett的《碟形世界》系列中的猩猩语言。其特点如下:极简语法:仅包含三个基本符号:Ook.、Ook?、Ook!,通过不同组合表达指令。基于Brainfuck:Ook密码与Brainfuck一一对应,每个Ook指令对应一个Brai
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- 牛客练习赛135——小柒的逆序对(2)
KyollBM
算法数据结构
这里还得说一下,调换一个排列中任意两个不同的数,该排列的逆序数奇偶会改变题目:思路:这道题的数据给的很大,如果我们用树状数组维护前缀和都没用,但是我们观察到英文字符只有26个,那我们可以开一个二维数组g[i][j]表示ij字符对有多少个如何维护这个数组呢,其实也很简单,遍历s每个字符c,同时开一个数组储存26个字符对于字符c,先遍历26个字符y,将g[y][c]加上y的个数,结束后再将c的数量加一
- CESM1.2.1移植使用说明
༊.枕星'听光.ঌ
人工智能linux
文章目录概述环境配置cesm1_2_1配置部分环境软件压缩包改变CLM陆面模式结果文件的输出变量、特征值及频率小结概述记录用户如何在Linux系统上移植CESM1.2.1模型,并且使用CLM4.5模式创建并单点模拟算例I_2000_CLM45。环境配置1.更新系统软件源2.更新系统安装软件安装git、make、python等。3.安装MPI(openmpi4.1.5)//下载并解压进入文件夹wge
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- Linux下共享内存 和 命名管道 的使用
誓约酱
Linux应用linux服务器c++算法
文章目录Linux共享内存:完整代码展示与剖析共享内存:原理、接口与应用实践引言一、共享内存核心原理⚙️1.1共享内存的特点1.2生命周期管理⏳二、关键系统接口解析2.1生成唯一标识Key2.2创建/获取共享内存️2.3内存挂接与去关联2.4控制操作完整代码展示1.公用头文件`common.hpp`2.客户端代码`client.cc`3.服务端代码`server.cc`编译与运行编译命令运行步骤▶
- vs2019 Qt C++中调用python代码
路奇怪
VisualStudioqtc++
目录1.添加依赖库,.lib,include2.修改python.h文件3.环境搭建好了下面是测试代码部分4.如果按照面上走可能会出现的问题:5.Qt+vs+python6.说一下这里调py的主要步骤借鉴几位大佬(吐槽一下各种坑啊)混合编程之——C++调用python2.7&python3.5-CSDN博客c++调用python(复杂版)_c++调用python复杂库-CSDN博客环境配置:1.添
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- llm数据存储基础设施
galileo2016
人工智能
链接:https://i68.ltd/notes/posts/20250310-llm-db/infinity专为LLM应用程序构建的AI原生数据库,可提供对密集向量、稀疏向量、张量(多向量)和全文的快速混合搜索项目仓库:https://github.com/infiniflow/infinity关键特性令人难以置信的快在百万级矢量数据集上实现0.1毫秒查询延迟和15K+QPS在33M文档的全文搜
- k8s基础架构介绍
忍界英雄
dockerkubernetes容器云原生
k8s基础架构介绍k8s是对容器进行编排的一种工具。通过k8s可以实现对容器的编排、部署、更新等学习k8s之前,先了解相关的一些使用和配置k8s的一些工具。k8s的常用工具在kubernetes中,主要有三个日常使用的工具,这些工具使用kube前缀命名,这三个工具如下:kubeadm用来初始化集群的指令,能够创建集群,并且添加新的节点。可用其它部署工具替代。具体功能有:初始化集群:在控制平面节点(
- python hack库_这里有123个黑客必备的Python工具!
weixin_39637571
pythonhack库
123个Python渗透测试工具,当然不仅于渗透~如果你想参与漏洞研究、逆向工程和渗透,我建议你时候用Python语言。Python已经有很多完善可用的库,我将在这里把他们列出来。这个清单里的工具大部分都是Python写成的,一部分是现有C库的Python绑定,这些库在Python中都可以简单使用。一些强力工具(pentestframeworks、bluetoothsmashers、webappl
- 深入解析React 18核心特性:构建未来级Web应用的全面指南
斯~内克
react知识点前端react.js前端框架
一、React18的里程碑意义React18作为近年来最具革命性的版本更新,标志着前端开发正式进入并发渲染时代。这个版本不仅带来了底层架构的革新,更重新定义了现代Web应用的性能标准与开发范式。根据npm官方统计,React18发布首周下载量突破1800万次,GitHub星标数新增3.4万,充分展现了开发者社区对其技术价值的认可。二、架构革命:并发模式深度解析2.1并发渲染原理//传统同步渲染模式
- Windows域渗透之域管理
人间酒中仙
红队笔记之域渗透windows笔记学习网络安全域渗透红队笔记
Windows域管理一、使用组策略进行软件分发1、操作步骤2、PowerShell命令示例二、配置组策略(GPO)设置1、设置密码策略2、禁用USB存储设备三、批量用户管理1、创建单个用户2、批量导入用户四、部署和管理共享驱动器1、使用组策略登录脚本自动映射驱动器2、使用PowerShell映射网络驱动器五、管理Windows更新1、使用组策略配置自动更新2、使用PowerShell管理Windo
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- 如何用爬虫根据关键词获取商品列表:一份简单易懂的代码示例
API小爬虫
爬虫
在当今数字化时代,网络爬虫已经成为数据收集和分析的强大工具。无论是市场调研、价格监控还是产品分析,爬虫都能帮助我们快速获取大量有价值的信息。今天,我们就来探讨如何通过编写一个简单的爬虫程序,根据关键词获取商品列表。以下是一个基于Python语言的代码示例,适合初学者学习和实践。一、准备工作在开始编写爬虫之前,我们需要准备以下工具和库:Python环境:确保你的电脑上安装了Python。推荐使用Py
- 打造高性能的react
大鸡腿最好吃
react.js
根本目的就是减少重复渲染使用使用shouldComponentUpdate规避冗余的更新逻辑shouldComponentUpdate触发的条件是只要父组件更新了,就会被触发,在里面判断传入的pros是否改变,不变则返回falsePureComponent+Immutable.jsPureComponent其实就是内置了对shouldComponentUpdate的实现,不过其对props的比对是
- 【Python】构建Web应用的首选:Flask框架基础与实战
萧鼎
python基础到进阶教程python前端flask
构建Web应用的首选:Flask框架基础与实战在Python的Web开发生态中,Flask框架以其轻量、灵活和易用的特性成为构建Web应用的首选之一。无论是快速搭建一个小型应用原型,还是构建复杂的后端服务,Flask都提供了便捷的接口和丰富的扩展支持。本博客将介绍Flask的基础知识和核心概念,并通过一个简单的实例展示如何用Flask构建Web应用。一、Flask框架简介Flask是由ArminR
- Android Jetpack介绍
Gary.Mi
Android
1.文档背景本文是Jetpack介绍系列文档的开篇,是对Jetpack整体的介绍,后续会对其中的各个组件分别单独说明。2.官方简介Jetpack是一套库、工具和指南,可帮助开发者更轻松地编写优质应用。使用这些组件,可帮助开发者遵循最佳实践,摆脱编写样板代码的工作并简化复杂任务,使开发者将精力集中放在所需的代码上。Jetpack包含与平台API解除捆绑的androidx.*软件包库。这意味着,它可以
- 基于Docker及Kubernetes技术构建容器云(PaaS)平台概述_基于kubernetes iaas(1)
2401_83946044
程序员dockerkubernetespaas
|组成模块|模块说明||—|—||AppRouter[流量接入层]|接收用户请求,并转发到不同的AppRuntime。||AppRuntime[应用运行层]|应用运行环境,为各个应用提供基本的运行引擎,从而让app能够运行起来。||Services[基础服务层]|各个通用基础服务,主要是对主流的服务提供通用的接入,例如数据库等。||PlatformControl[平台控制层]|整个平台的控制中心,
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- CIR-DFENet:结合跨模态图像表示和双流特征增强网络进行活动识别
是Dream呀
神经网络计算机视觉人工智能神经网络深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和求职工作的先行者!【优惠信息】•新专栏订阅前200名享9.9元优惠•订阅量破200
- fastapi和php,Sanic vs Fastapi 性能对比
扫盲君
fastapi和php
Sanic,Fastapi都是优秀的pythonweb异步框架,找了半天没找到靠谱的性能对比测试,只能自己做一个。测试内容:纯get请求、异步ORM读测试工具:WRK测试代码:由于两者代码非常相似,本文就直接放上fastapi的代码demo了。1、纯get请求压测:1.1:代码代码demo1.2:结果1.2.1SanicRunning30stest@http://0.0.0.0:7006/4thr
- 基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现
rockmelodies
信息安全网络安全机器学习集成学习python机器学习人工智能
标题:基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现一、方案设计原理异构特征工程静态特征:基于AST的代码属性图(CPG)解析(使用Joern+NetworkX)动态特征:内存访问模式分析(通过QEMU模拟执行)上下文特征:CWE漏洞模式匹配(集成Semgrep规则引擎)轻量级模型架构
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =