网络库的介绍
1.HttpURLConnection
API简单,体积较小,因而非常适用于Android项目,但是在android 2.2及以下版本中HttpUrlConnection存在着一些bug,所以建议在android 2.3以后使用HttpUrlConnection,在这之前使用的是HttpClient。
2.HttpClient (Apache )
高效稳定,但是维护成本高昂,故android 开发团队不愿意维护该库更青睐轻便的HttpUrlConnection。Android 5.0后已废弃该库。
3.OKHttp
Square公司产品,OkHttp相比HttpURLConnection和HttpClient功能更加强大。
4.Volley
Volley是在2013年Google I/O大会上推出了一个新的网络通信框架,内部封装了HttpURLConnection和HttpClient, 解决了网络数据解析和线程切换的问题。
主要用于解决通讯频率高,但传输数据量小的情景而对于大数据量的网络操作,比如说下载文件等,Volley的表现就会非常糟糕。
其实Volley的使用是很简单的,总的来说就是发送一个http的请求,将请求加入到RequestQueue(请求队列)中,这里的RequestQueue是一个请求队列对象,它可以缓存所有的HTTP请求,然后按照一定的算法并发地发出这些请求。RequestQueue内部的设计就是非常合适高并发的,因此我们不必为每一次HTTP请求都创建一个RequestQueue对象,这是非常浪费资源的,基本上在每一个需要和网络交互的Activity中创建一个RequestQueue对象就足够了。
总的来说我们常用的Volley就下面三个步骤:Volley.newRequestQueue(context).add(request);
1. 创建一个RequestQueue对象。
2. 创建一个StringRequest对象。
3. 将StringRequest对象添加到RequestQueue里面。
下面我们主要通过这三句话来分析一下Volley源码中的实现原理
这是官方的关于Volley工作流程图 , 其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。
第一步:newRequestQueue(context)
public static RequestQueue newRequestQueue(Context context) {
return newRequestQueue(context, null); //执行带两个参数的构造方法
}
这个方法仅仅只有一行代码,只是调用了newRequestQueue()的方法重载,并给第二个参数传入null。那我们看下带有两个参数的newRequestQueue()方法中的代码,如下所示:
public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
String userAgent = "volley/0";
try {
String packageName = context.getPackageName();
PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
userAgent = packageName + "/" + info.versionCode;
} catch (NameNotFoundException e) {
}
if (stack == null) { //判断如果stack是等于null的,则去创建一个HttpStack对象
if (Build.VERSION.SDK_INT >= 9) {
stack = new HurlStack();
} else {
// Prior to Gingerbread, HttpUrlConnection was unreliable.
// See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
}
}
Network network = new BasicNetwork(stack);
RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
queue.start();
return queue;
}
在上面的代码中可以看出,如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9(这里指SDK版本)的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而HttpClientStack的内部则是使用HttpClient进行网络通讯的,至于为什么说需要大于或等于9,是因为SDK为9时对应的系统为android2.3,版本2.3以后推荐使用HttpURLConnection.
创建好了HttpStack之后,接下来又创建了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将RequestQueue返回,这样newRequestQueue()的方法就执行结束了。接下啦我们看看RequestQueue的start()方法内部执行内容:
/** Number of network request dispatcher threads to start. */
private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;//默认网络请求线程数量
/**
* Starts the dispatchers in this queue.
*/
public void start() {
stop(); // Make sure any currently running dispatchers are stopped.
// Create the cache dispatcher and start it.
mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
mCacheDispatcher.start();
// Create network dispatchers (and corresponding threads) up to the pool size.
for (int i = 0; i < mDispatchers.length; i++) {
NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
mCache, mDelivery);
mDispatchers[i] = networkDispatcher;
networkDispatcher.start();
}
}
这里先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来,其中CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。
上面得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了,下面我们分析一下add()方法的内部的逻辑
/**
* Adds a Request to the dispatch queue.
* @param request The request to service
* @return The passed-in request
*/
public Request add(Request request) {
// Tag the request as belonging to this queue and add it to the set of current requests.
request.setRequestQueue(this);
synchronized (mCurrentRequests) {
mCurrentRequests.add(request);
}
// Process requests in the order they are added.
request.setSequence(getSequenceNumber());
request.addMarker("add-to-queue");
// If the request is uncacheable, skip the cache queue and go straight to the network.
if (!request.shouldCache()) { //判断当前的请求是否可以缓存
mNetworkQueue.add(request); //如果不能缓存则直接将这条请求加入网络请求队列
return request;
}
// Insert request into stage if there's already a request with the same cache key in flight.
synchronized (mWaitingRequests) {
String cacheKey = request.getCacheKey();
if (mWaitingRequests.containsKey(cacheKey)) {
// There is already a request in flight. Queue up.
Queue> stagedRequests = mWaitingRequests.get(cacheKey);
if (stagedRequests == null) {
stagedRequests = new LinkedList>();
}
stagedRequests.add(request);
mWaitingRequests.put(cacheKey, stagedRequests);
if (VolleyLog.DEBUG) {
VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
}
} else {
// Insert 'null' queue for this cacheKey, indicating there is now a request in
// flight.
mWaitingRequests.put(cacheKey, null);
mCacheQueue.add(request); //可以缓存的话则在将这条请求加入缓存队列
}
return request;
}
}
可以看到,开始的时候会判断当前的请求是否可以缓存,如果不能缓存则直接将这条请求加入网络请求队列,可以缓存的话则将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。
既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,代码如下所示:
public class CacheDispatcher extends Thread {
...... //省略代码
@Override
public void run() {
if (DEBUG) VolleyLog.v("start new dispatcher");
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
// Make a blocking call to initialize the cache.
mCache.initialize();
while (true) { //死循环
try {
// Get a request from the cache triage queue, blocking until
// at least one is available.
final Request> request = mCacheQueue.take();
request.addMarker("cache-queue-take");
// If the request has been canceled, don't bother dispatching it.
if (request.isCanceled()) {
request.finish("cache-discard-canceled");
continue;
}
// Attempt to retrieve this item from cache.
Cache.Entry entry = mCache.get(request.getCacheKey()); //从缓存当中取出响应结果
if (entry == null) { //如何为空的话则把这条请求加入到网络请求队列中
request.addMarker("cache-miss");
// Cache miss; send off to the network dispatcher.
mNetworkQueue.put(request);
continue;
}
// If it is completely expired, just send it to the network.
if (entry.isExpired()) { //如果不为空的但该缓存已过期,则同样把这条请求加入到网络请求队列中
request.addMarker("cache-hit-expired");
request.setCacheEntry(entry);
mNetworkQueue.put(request);
continue;
}
// We have a cache hit; parse its data for delivery back to the request.
request.addMarker("cache-hit");
Response> response = request.parseNetworkResponse(
new NetworkResponse(entry.data, entry.responseHeaders)); //对数据进行解析
request.addMarker("cache-hit-parsed");
if (!entry.refreshNeeded()) {
// Completely unexpired cache hit. Just deliver the response.
mDelivery.postResponse(request, response);
} else {
// Soft-expired cache hit. We can deliver the cached response,
// but we need to also send the request to the network for
// refreshing.
request.addMarker("cache-hit-refresh-needed");
request.setCacheEntry(entry);
// Mark the response as intermediate.
response.intermediate = true;
// Post the intermediate response back to the user and have
// the delivery then forward the request along to the network.
mDelivery.postResponse(request, response, new Runnable() {
@Override
public void run() {
try {
mNetworkQueue.put(request);
} catch (InterruptedException e) {
// Not much we can do about this.
}
}
});
}
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
}
}
}
可以看到一个while(true)循环,说明缓存线程始终是在运行的,接着会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。之后会调用Request的parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了,这部分代码的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么我们等下合并在一起看就好了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码如下所示:
public class NetworkDispatcher extends Thread {
.......//省略代码
@Override
public void run() {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
while (true) { //死循环
long startTimeMs = SystemClock.elapsedRealtime();
Request> request;
try {
// Take a request from the queue.
request = mQueue.take();
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
try {
request.addMarker("network-queue-take");
// If the request was cancelled already, do not perform the
// network request.
if (request.isCanceled()) {
request.finish("network-discard-cancelled");
continue;
}
addTrafficStatsTag(request);
// Perform the network request.
NetworkResponse networkResponse = mNetwork.performRequest(request); //执行网络请求
request.addMarker("network-http-complete");
// If the server returned 304 AND we delivered a response already,
// we're done -- don't deliver a second identical response.
if (networkResponse.notModified && request.hasHadResponseDelivered()) {
request.finish("not-modified");
continue;
}
// Parse the response here on the worker thread.
Response> response = request.parseNetworkResponse(networkResponse); //解析响应的网络数据
request.addMarker("network-parse-complete");
// Write to cache if applicable.
// TODO: Only update cache metadata instead of entire record for 304s.
if (request.shouldCache() && response.cacheEntry != null) {
mCache.put(request.getCacheKey(), response.cacheEntry);
request.addMarker("network-cache-written");
}
// Post the response back.
request.markDelivered();
mDelivery.postResponse(request, response);
} catch (VolleyError volleyError) {
volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
parseAndDeliverNetworkError(request, volleyError);
} catch (Exception e) {
VolleyLog.e(e, "Unhandled exception %s", e.toString());
VolleyError volleyError = new VolleyError(e);
volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
mDelivery.postError(request, volleyError);
}
}
}
private void parseAndDeliverNetworkError(Request> request, VolleyError error) {
error = request.parseNetworkError(error);
mDelivery.postError(request, error);
}
}
同样地,我们看到了类似的while(true)循环,说明网络请求线程也是在不断运行的。在死循环中会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,我们在上面创建 stack是通过这段代码(Network network = new BasicNetwork(stack);)实现网络请求的,所以这里具体的实现是BasicNetwork,所以我们在BasicNetwork类中查看performRequest()方法,如下所示:
public class BasicNetwork implements Network {
.....//省略代码
@Override
public NetworkResponse performRequest(Request> request) throws VolleyError {
long requestStart = SystemClock.elapsedRealtime();
while (true) {
HttpResponse httpResponse = null;
byte[] responseContents = null;
Map responseHeaders = Collections.emptyMap();
try {
// Gather headers.
Map headers = new HashMap();
addCacheHeaders(headers, request.getCacheEntry());
httpResponse = mHttpStack.performRequest(request, headers); //调用了HttpStack的performRequest()方法
StatusLine statusLine = httpResponse.getStatusLine();
int statusCode = statusLine.getStatusCode();
responseHeaders = convertHeaders(httpResponse.getAllHeaders());
// Handle cache validation.
if (statusCode == HttpStatus.SC_NOT_MODIFIED) {
Entry entry = request.getCacheEntry();
if (entry == null) {
return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,
responseHeaders, true,
SystemClock.elapsedRealtime() - requestStart); //组装成一个NetworkResponse对象进行返回
}
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
entry.responseHeaders.putAll(responseHeaders);
return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,
entry.responseHeaders, true,
SystemClock.elapsedRealtime() - requestStart); //组装成一个NetworkResponse对象进行返回
}
// Some responses such as 204s do not have content. We must check.
if (httpResponse.getEntity() != null) {
responseContents = entityToBytes(httpResponse.getEntity());
} else {
// Add 0 byte response as a way of honestly representing a
// no-content request.
responseContents = new byte[0];
}
// if the request is slow, log it.
long requestLifetime = SystemClock.elapsedRealtime() - requestStart;
logSlowRequests(requestLifetime, request, responseContents, statusLine);
if (statusCode < 200 || statusCode > 299) {
throw new IOException();
}
return new NetworkResponse(statusCode, responseContents, responseHeaders, false,
SystemClock.elapsedRealtime() - requestStart);
} catch (SocketTimeoutException e) {
...... //省略代码
}
}
}
}
这段代码主要是一些网络请求细节方面的东西,需要注意的是调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。
在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。如果想自定义Request的方式,其中parseNetworkResponse()这个方法就是必须要重写的。
在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:
1.在NetworkDispatcher类中
private final ResponseDelivery mDelivery;
// Parse the response here on the worker thread.
Response> response = request.parseNetworkResponse(networkResponse); //解析数据
request.addMarker("network-parse-complete");
mDelivery.postResponse(request, response); //回调解析出的数据,具体实现在下面代码中
2.在ExecutorDelivery类中回调解析出来的数据
public class ExecutorDelivery implements ResponseDelivery {
@Override
public void postResponse(Request> request, Response> response) {
postResponse(request, response, null);
}
@Override
public void postResponse(Request> request, Response> response, Runnable runnable) {
request.markDelivered();
request.addMarker("post-response");
mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
}
}
其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,这样就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:
private class ResponseDeliveryRunnable implements Runnable {
@SuppressWarnings("unchecked")
@Override
public void run() {
// If this request has canceled, finish it and don't deliver.
if (mRequest.isCanceled()) {
mRequest.finish("canceled-at-delivery");
return;
}
// Deliver a normal response or error, depending.
if (mResponse.isSuccess()) {
mRequest.deliverResponse(mResponse.result);
} else {
mRequest.deliverError(mResponse.error);
}
// If this is an intermediate response, add a marker, otherwise we're done
// and the request can be finished.
if (mResponse.intermediate) {
mRequest.addMarker("intermediate-response");
} else {
mRequest.finish("done");
}
// If we have been provided a post-delivery runnable, run it.
if (mRunnable != null) {
mRunnable.run();
}
}
分析重点代码即可,主要看Request的deliverResponse()方法,这个方法也是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。
5.Retrofit.
Square公司产品,内部封装了OKhttp, 解决了网络数据解析和线程切换的问题。