冯若依曼结构和哈弗结构

冯·诺依曼结构

冯·诺依曼结构,又称为普林斯顿体系结构,是一种将程序指令存储器数据存储器合并在一起的存储器结构。取指令和取操作数都在同一总线上,通过分时复用的方式进行;缺点是在高速运行时,不能达到同时取指令和取操作数,从而形成了传输过程的瓶颈。由于程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,因此程序指令和数据的宽度相同,如英特尔公司的8086中央处理器的程序指令和数据都是16位宽。

冯若依曼结构和哈弗结构_第1张图片
冯·诺依曼结构.jpg

哈佛结构

哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,它的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个独立的存储器,每个存储器独立编址、独立访问,目的是为了减轻程序运行时的访存瓶颈。

冯若依曼结构和哈弗结构_第2张图片
哈佛结构.png
冯若依曼结构和哈弗结构_第3张图片
哈佛结构示例.jpg

如图,哈佛结构的计算机由CPU、程序存储器和数据存储器组成,程序存储器和数据存储器采用不同的总线,从而提供了较大的存储器带宽,使数据的移动和交换更加方便,尤其提供了较高的数字信号处理性能。

哈佛结构和冯诺依曼结构

哈佛结构和冯诺依曼结构主要区别在是否区分指令与数据。实际上在内存里,指令和数据是在一起的。而在CPU内的缓存中,还是会区分指令缓存和数据缓存,最终执行的时候,指令和数据是从两个不同的地方出来的。在CPU外部,采用的是冯诺依曼模型,而在CPU内部用的是哈佛结构。大部分的DSP都没有缓存,因而直接就是哈佛结构。哈佛结构设计复杂,但效率高。冯诺依曼结构则比较简单,但也比较慢。CPU厂商为了提高处理速度,在CPU内增加了高速缓存。也基于同样的目的,区分了指令缓存和数据缓存。现在 intel 的处理器虽说是“CISC”但是也应用了大量的RISC思想。

CPU运行程序要先把程序和数据读入内存,编程时无法预料到这些程序和数据具体在那个物理地址,而是采用逻辑地址。PC机运行的程序很多,如果采用哈佛结构,程序总线和数据总线对应物理地址的切换会耗费更多的资源。而采用一条总线来读,就不存在这个问题。DSP采用哈佛结构,因为嵌入式应用不需要运行太多的任务。

冯·诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。

根据冯诺依曼体系结构构成的计算机,必须具有如下功能:把需要的程序和数据送至计算机中;必须具有长期记忆程序、数据、中间结果及最终运算结果的能力;能够完成各种算术、逻辑运算和数据传送等数据加工处理的能力;能够根据需要控制程序走向,并能根据指令控制机器的各部件协调操作;能够按照要求将处理结果输出给用户。

哈佛结构是为了高速数据处理而采用的,因为可以同时读取指令和数据(分开存储的)。大大提高了数据吞吐率,缺点是结构复杂。通用微机指令和数据是混合存储的,结构上简单,成本低。假设是哈佛结构:你就得在电脑安装两块硬盘,一块装程序,一块装数据,内存装两根,一根储存指令,一根存储数据。

是什么结构要看总线结构的。51单片机虽然数据指令存储区是分开的,但总线是分时复用得,所以顶多算改进型的哈佛结构。ARM9虽然是哈佛结构,但是之前的版本也还是冯·诺依曼结构。早期的X86能迅速占有市场,一条很重要的原因,正是靠了冯·诺依曼这种实现简单,成本低的总线结构。处理器虽然外部总线上看是诺依曼结构的,但是由于内部CACHE的存在,因此实际上内部来看已经算是改进型哈佛结构的了。至于优缺点,哈佛结构就是复杂,对外围设备的连接与处理要求高,十分不适合外围存储器的扩展。所以早期通用CPU难以采用这种结构。而单片机,由于内部集成了所需的存储器,所以采用哈佛结构也未尝不可。处理器,依托CACHE的存在,已经很好的将二者统一起来了。

你可能感兴趣的:(冯若依曼结构和哈弗结构)