- chokidar - chokidar 初识(初识案例演示、初识案例解读、初识案例测试)
我命由我12345
Node.js简化库编程node.jsjsjavascript前端框架前端npmhtml5
一、chokidar1、chokidar概述chokidar是一个用于监视文件系统变化的Node.js库chokidar提供了一种简单、高效的方式来监视文件和目录的创建、修改、删除等操作chokidar是是fs.watch和fs.watchFile方法的增强版,解决了它们在一些平台上的不一致性和局限性2、chokidar的特点跨平台的支持:chokidar在Windows、Linux、macOS上
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- llama源码学习·model.py[3]ROPE旋转位置编码(2)旋转角度生成代码
小杜不吃糖
llama
一、源码注释defprecompute_freqs_cis(dim:int,end:int,theta:float=1000.0):'''预先计算频率和复数的cosine和sine值,用于后续的PositionalEncodingdim:维度end:一个序列的最大长度或位置的最大值theta:用于计算频率的超参数,默认值为1000.0'''#生成一个等比数列,即频率(frequencies),这种
- 跟着黑马学MySQL基础篇笔记(1)-概述与SQL
小杜不吃糖
mysql笔记sql
03.安装与启动启动netstartmysql80netstopmysql80客户端连接mysql[-h127.0.0.1][-P3306]-uroot-p04.mysql数据模型关系型数据库RDBMS05.通用语法及分类DDL:数据定义语言,用来定义数据库对象(数据库,表,字段)DML:数据操作语言,用来对数据库表中的数据进行增删改DQL:数据查询语言,用来查询数据库中表的记录DCL:数据控制语
- PostgreSQL_实例项目总述
程序猿与金融与科技
数据库postgresql
目录前置:实例项目总述:前置:1最近新入PostgreSQL,打算用PostgreSQL存储股票日数据,以此为实例记录整个PostgreSQL使用过程2所以这次的博文是一个序列,都放在数据库专栏里,以PostgreSQL_打头3PostgreSQL的安装在这个系列里就不赘述了,安装过程简单。(如果有人实在搞不懂怎么安装,可以留言)实例项目总述:项目描述:股票日数据仓库数据来源:优矿1数据表结构设计
- minimind2学习:(1)训练
溯源006
minimind学习学习深度学习生成模型
1、数据下载参考:https://github.com/jingyaogong/minimind/tree/master2、预训练训练6个epochspythontrain_pretrain.py--epochs6训练过程:LLM总参数量:25.830百万Epoch:[1/6](0/11040)loss:8.940lr:0.000550000000epoch_Time:106.0min:Epoch
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 集成学习(上):Bagging集成方法
万事可爱^
机器学习修仙之旅#监督学习集成学习机器学习人工智能Bagging随机森林
一、什么是集成学习?在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- Linux系统之cal命令详解
门前灯
linux运维服务器cal
cal命令详解cal是一个用于显示日历的简单工具。默认情况下,它会显示当前月份的日历,但可以通过参数和选项显示特定月份、年份或自定义格式的日历。基本语法cal[options][[[day]month]year]无参数:显示当前月份的日历。单参数:显示指定年份的日历。双参数:显示指定月份和年份的日历。三参数:显示指定日、月和年份的日历,并在终端上高亮显示该日期。常用选项选项描述-1,--one显示
- windows使用ssh-copy-id命令的解决方案
爱编程的喵喵
Windows实用技巧windowssshssh-copy-id解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了windows使用ssh-copy-
- windows版本安装swoole记录
云上全栈工程师
swoole
下载安装swoole参考地址https://www.pianshen.com/article/64471690688/安装的重点就是phpize,如果没有安装这个无法运行下面的操作
- easyswoole学习记录
司江龙
swoolePHPeasyswooleswoole
php-fpm的工作方式php-fpm就是php-fastcgi进程管理器主要工作的就是mastr进程,主要和linux进行一个协调,当请求从nginx到fpm的时候,master会把请求交给自己下面管理的子进程一个池模型,问题:一个work进程内只会处理一个请求,也就是说这个进程内在同一时刻只会处理一个request请求,不会处理多个,所以一台服务器的并发数就取决于服务器开启了多少个work进程
- 3.无重复字符的最长字串(滑动窗口+哈希)C语言
Re_draw_debubu
哈希算法算法c语言滑动窗口
代码思路1.滑动窗口法使用滑动窗口法,通过维护一个窗口(由start_index和end定义),动态调整窗口的大小,确保窗口内的字符没有重复。2.哈希表记录字符位置使用一个数组hash_map[128]来记录每个字符最后一次出现的位置。数组大小为128,因为ASCII字符的范围是0到127。hash_map[c]表示字符c最后一次出现的位置。3.滑动窗口的维护start_index表示当前窗口的起
- 关于swoole的初步了解记录
snacy
swoolephp服务器
今天初步了解了一下关于swoole的相关知识,在这里记录一下。关于swoole的初步了解记录安装swoole扩展swoole扩展需要在Linux环境下安装,目前还不支持在Windows环境下安装,当前操作系统为centOS系统安装swoole需要:PHP、php-pear(这个是为了稍后可以使用pecl来安装swoole)、php-devel、gcc先执行更新操作:yumupdate(已更新过的可
- 鸿蒙NEXT版实战开发:使用WebRTC进行Web视频会议
那只斑马不睡觉
鸿蒙5.0ArkWebOpenHarmonyharmonyos华为前端androidArkWeb
往期鸿蒙全套实战精彩文章必看内容:鸿蒙开发核心知识点,看这篇文章就够了最新版!鸿蒙HarmonyOSNext应用开发实战学习路线鸿蒙HarmonyOSNEXT开发技术最全学习路线指南鸿蒙应用开发实战项目,看这一篇文章就够了(部分项目附源码)使用WebRTC进行Web视频会议Web组件可以通过W3C标准协议接口拉起摄像头和麦克风。开发者在使用该功能时,需配置ohos.permission.CAMER
- ARM架构薄记小记1——ARM架构的快速介绍
charlie114514191
嵌入式面试笔记整理计算机架构学习从0开始的学习ARMv7aIMX6ULL芯片arm开发架构
ARM架构薄记小记1——ARM架构的快速介绍笔者最近正在简单的了解一下ARM架构,特别是ARMCortexA架构的部分,这里,笔者想要薄记的问题有这样一些,也算是简单记录一下自己学习ARM架构的记录。问题1:ARM架构的历史是如何的,以此我们可以洞察ARM架构设计的一些动机问题2:我们知道,ARM架构中常见的架构是ARMv7到ARMv9,这些架构有发生怎样的变化?每一个架构的一些纲领性的东西是什么
- C语言 --- 分支
笑口常开xpr
C启新程:从基础迈向代码巅峰c语言
C语言---分支语句分支语句含义if...else语句单分支if语句语法形式双分支if-else语句语法形式悬空else含义问题描述多分支if-else语句语法形式switch...case语句含义语法形式总结作者简介:曾与你一样迷茫,现以经验助你入门C语言个人主页:@笑口常开xpr的个人主页系列专栏:C启新程✨代码趣语:C语言是一种简洁、高效、强大的语言,它能够让你做任何你想做的事情。代码千行,
- struts1+struts2项目兼容升级到了spring boot 2.7
和稀泥
strutsspringbootjava
原项目比较复杂,集成了各种框架(struts1struts2spring3等),趁工作之余练练手,学习一下springboot。大概花了一周时间才调通。一、调整jar版本,寻找合适的版本。第一步、首先原项目JDK6,要用springbootJDK肯定要升级了。原来的struts2也有漏洞了,也要升级。在不升级其他框架的情况下。jdk2117都可以运行,索性选择jdk21,反正是练手。第二步、str
- 强化学习 Reward
百态老人
算法
在强化学习中,奖励(Reward)是智能体(Agent)与环境(Environment)交互过程中获得的重要反馈信号。奖励机制在强化学习中扮演着至关重要的角色,因为它不仅指导智能体如何在环境中行动,还影响其策略的优化和最终的学习效果。奖励是智能体在执行某个动作后从环境中获得的即时反馈,用于评估该动作的好坏。这种反馈帮助智能体调整其行为策略,以期在未来获得更多的奖励。奖励可以是正数、负数或零,其或负
- C++有哪些高级特性值得学习?
c++
C++是一种功能丰富且复杂的编程语言,其中许多高级特性可以帮助开发者编写更高效、更安全、更灵活的代码。以下是一些值得深入学习的C++高级特性:模板编程(Templates)模板是C++中实现泛型编程的核心机制,允许开发者编写与数据类型无关的代码。模板函数cpp复制templateTmax(Ta,Tb){return(a>b)?a:b;}优点:模板函数可以处理多种数据类型,避免了代码重复。应用场景:
- 北斗导航 |低轨导航研究进展
单北斗SLAMer
卫星导航人工智能北斗三号GNSS算法低轨导航
低轨导航作为空天信息网络的重要组成部分,近年来在技术研发、系统构建及实际应用方面均取得显著进展。以下是基于最新研究动态的总结:一、技术研发与系统构建低轨导航增强系统技术突破2025年1月,青岛召开的低轨卫星导航增强系统技术发展研讨会汇集了国内26家单位的60名专家,重点讨论了低轨星座与现有导航系统(如北斗、GPS)的融合增强技术。例如:巨型导航星座数字仿真试验系统:国防科技大学刘文祥团队提出通过数
- 摄影工作室预约管理系统基于Spring BootSSM
QQ1978519681计算机程序
springboot后端java毕业设计计算机毕设
目录摘要一、系统架构二、功能模块2.1用户管理模块2.2摄影师管理模块2.3预约管理模块2.4商品管理模块2.5管理员管理模块三.数据库设计四.技术栈五.安全性与性能六.用户界面与体验七.扩展性与可维护性摘要在数字化与信息化飞速发展的当下,人们的生活节奏日益加快,对于各类服务便捷性、高效性的需求也愈发强烈。摄影服务作为记录生活美好瞬间、留存珍贵回忆的重要方式,深受大众喜爱。然而,传统的摄影工作室预
- 【DeepThinking】人生反思洞察之「知行合一」(经验贴)
碣石潇湘无限路
经验分享笔记生活人生深度思考知行合一
引言最近,我深刻体会到一种焦虑:既有生活的现实压力,也有对人生方向的迷茫与无奈。回顾自身,我发现这并不是物质层面的匮乏或欲望驱动,而是对“我是谁”“我想要什么”“我能做什么”的追问。这种焦虑,常常让我想起人的出生:起初我们依赖父母和环境,被动地活着;成年后,我们凭借主动学习、工作和不断积累的信念,去实现自我价值。但终有一天,我们会停下来审视自己,看清一些本质问题,并且发觉自己需要对这一生负责:我应
- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- win-服务器部署程序自启动设置
johnrui
operationandmaintenancewin运维
为了简化应用服务器中项目启动的操作,现对在win操作系统下服务启动设置为开机启动的相关操作,在这里做一次记录和分享。参阅了很多文章,知道win设置开机启动项方式很多,这篇文章只是其中的一种,但是经过了实践测试非常有效。设置步骤如下:1)按住Win键,再按R键(Win+R),启动"运行"窗口;2)WindowsXP/2003/2008/2008R2输入:controluserpasswords2Wi
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc