MapRedue开发实例

一些例子,所用版本为hadoop 2.6.5

1、统计字数

数据格式如下(单词,频数,以tab分开):

A    100
B    97
C    98
A 98
 1 package com.mr.test;
 2 
 3 import java.io.IOException;
 4 import org.apache.hadoop.conf.Configuration;
 5 import org.apache.hadoop.fs.Path;
 6 import org.apache.hadoop.io.IntWritable;
 7 import org.apache.hadoop.io.Text;
 8 import org.apache.hadoop.mapreduce.Job;
 9 import org.apache.hadoop.mapreduce.Mapper;
10 import org.apache.hadoop.mapreduce.Reducer;
11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
13 
14 public class MRTest {
15     
16     public static class C01Mapper extends Mapper {
17         
18         @Override
19         public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
20             String[] line = value.toString().split("\t");
21             if(line.length == 2) {
22                 context.write(new Text(line[0]),new IntWritable(Integer.parseInt(line[1])));                
23             }            
24         }
25     }
26     
27     public static class C01Reducer extends Reducer {
28         
29         @Override
30         public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
31             int i =0;
32             for(IntWritable value : values){
33                 i += value.get();
34             }
35             context.write(key, new IntWritable(i));
36         }        
37     }    
38 
39     public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
40         //参数含义: agrs[0]标识 in, agrs[1]标识 out,agrs[2]标识 unitmb,agrs[3]标识 reducer number,
41         
42         int unitmb =Integer.valueOf(args[2]);
43         String in = args[0];
44         String out = args[1];
45         int nreducer = Integer.valueOf(args[3]);
46         
47         Configuration conf = new Configuration();
48         conf.set("mapreduce.input.fileinputformat.split.maxsize", String.valueOf(unitmb * 1024 * 1024));
49         conf.set("mapred.min.split.size", String.valueOf(unitmb * 1024 * 1024));
50         conf.set("mapreduce.input.fileinputformat.split.minsize.per.node", String.valueOf(unitmb * 1024 * 1024));
51         conf.set("mapreduce.input.fileinputformat.split.minsize.per.rack", String.valueOf(unitmb * 1024 * 1024));
52         
53         Job job = new Job(conf);
54         FileInputFormat.addInputPath(job, new Path(in));
55         FileOutputFormat.setOutputPath(job, new Path(out));
56         job.setMapperClass(C01Mapper.class);
57         job.setReducerClass(C01Reducer.class);
58         job.setNumReduceTasks(nreducer);
59         job.setCombinerClass(C01Reducer.class);
60         job.setMapOutputKeyClass(Text.class);
61         job.setMapOutputValueClass(IntWritable.class);
62         job.setOutputKeyClass(Text.class);
63         job.setOutputValueClass(IntWritable.class);
64         job.setJarByClass(MRTest.class);
65         job.waitForCompletion(true);
66     }
67 }

2、统计用户在网站的停留时间

数据格式(用户,毫秒数,网站,以tab分开):

A	100	baidu.com
B	900	google.com
C	515	sohu.com
D	618	sina.com
E	791	google.com
B	121	baidu.com
C	915	google.com
D	112	sohu.com
E	628	sina.com
A	681	google.com
C	121	baidu.com
D	215	google.com
E	812	sohu.com
A	128	sina.com
B	291	google.com
  1 package com.mr.test;
  2 
  3 import java.io.IOException;
  4 import org.apache.hadoop.conf.Configuration;
  5 import org.apache.hadoop.fs.Path;
  6 import org.apache.hadoop.io.IntWritable;
  7 import org.apache.hadoop.io.Text;
  8 import org.apache.hadoop.io.WritableComparable;
  9 import org.apache.hadoop.io.WritableComparator;
 10 import org.apache.hadoop.mapreduce.Job;
 11 import org.apache.hadoop.mapreduce.Mapper;
 12 import org.apache.hadoop.mapreduce.Partitioner;
 13 import org.apache.hadoop.mapreduce.Reducer;
 14 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 16 
 17 public class MRWeb {
 18 
 19     public static class C02Mapper extends Mapper {
 20         @Override
 21         public void map(Object key, Text value, Context context) throws IOException, InterruptedException{
 22             String line[] = value.toString().split("\t");
 23             //格式检查
 24             if(line.length == 3){
 25                 String name = line[0];
 26                 String time = line[1];
 27                 String website = line[2];    
 28                 context.write(new Text(name + "\t" + time), new Text(time + "\t" + website));
 29             }                
 30         }        
 31     }    
 32     
 33     public static class C02Partitioner extends Partitioner {
 34         
 35         @Override
 36         public int getPartition(Text key, Text value, int number) {
 37             String name = key.toString().split("\t")[0];
 38             int hash =name.hashCode();    
 39             //以此实现分区
 40             return Math.abs(hash % number);
 41         }
 42         
 43     }
 44     
 45     public static class C02Sort extends WritableComparator {
 46         //必须有的
 47         protected C02Sort() {
 48             super(Text.class,true);            
 49         }
 50         
 51         @Override
 52         public int compare(WritableComparable w1, WritableComparable w2) {
 53             Text h1 = new Text(((Text)w1).toString().split("\t")[0] );
 54             Text h2 = new Text(((Text)w2).toString().split("\t")[0] );
 55             IntWritable m1 =new IntWritable(Integer.valueOf(((Text)w1).toString().split("\t")[1]));
 56             IntWritable m2 =new IntWritable(Integer.valueOf(((Text)w2).toString().split("\t")[1]));
 57             
 58             int result;
 59             if(h1.equals(h2)){
 60                 result = m2.compareTo(m1);
 61             }else {
 62                 result =h1.compareTo(h2);
 63             }    
 64             return result;
 65         }
 66     }
 67     
 68     public  static class C02Group extends WritableComparator{
 69         protected C02Group() {
 70             super(Text.class,true);            
 71         }
 72         @Override
 73         public int compare(WritableComparable w1, WritableComparable w2) {
 74             Text h1 = new Text(((Text)w1).toString().split("\t")[0] );
 75             Text h2 = new Text(((Text)w2).toString().split("\t")[0] );
 76                         
 77             return h1.compareTo(h2);
 78         }        
 79     }
 80     
 81     public static class C02Reducer extends Reducer {
 82         
 83         @Override
 84         protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
 85             int count = 0;
 86             String name =key.toString().split("\t")[0];
 87             //分组排序已经做好了,这里只管打印
 88             for(Text value : values){
 89                 count++;
 90                 StringBuffer buffer = new StringBuffer();
 91                 buffer.append(name);
 92                 buffer.append("\t");
 93                 buffer.append(value.toString());
 94                 context.write(new IntWritable(count), new Text(buffer.toString()));                
 95             }
 96         }
 97     }
 98     
 99     public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
100         //参数含义: agrs[0]标识 in, agrs[1]标识 out,agrs[2]标识 unitmb,agrs[3]标识 reducer number,
101         if(args.length != 4){
102             System.out.println("error");
103             System.exit(0);
104         }
105         
106         int unitmb =Integer.valueOf(args[2]);
107         String in = args[0];
108         String out = args[1];
109         int nreducer = Integer.valueOf(args[3]);
110                 
111         Configuration conf = new Configuration();
112         conf.set("mapreduce.input.fileinputformat.split.maxsize", String.valueOf(unitmb * 1024 * 1024));
113         conf.set("mapred.min.split.size", String.valueOf(unitmb * 1024 * 1024));
114         conf.set("mapreduce.input.fileinputformat.split.minsize.per.node", String.valueOf(unitmb * 1024 * 1024));
115         conf.set("mapreduce.input.fileinputformat.split.minsize.per.rack", String.valueOf(unitmb * 1024 * 1024));
116                 
117         Job job = new Job(conf);
118         FileInputFormat.addInputPath(job, new Path(in));
119         FileOutputFormat.setOutputPath(job, new Path(out));
120         job.setMapperClass(C02Mapper.class);
121         job.setReducerClass(C02Reducer.class);
122         job.setNumReduceTasks(nreducer);
123         job.setPartitionerClass(C02Partitioner.class);
124         job.setGroupingComparatorClass(C02Group.class);
125         job.setSortComparatorClass(C02Sort.class);        
126         job.setMapOutputKeyClass(Text.class);
127         job.setMapOutputValueClass(Text.class);
128         job.setOutputKeyClass(IntWritable.class);
129         job.setOutputValueClass(Text.class);
130         job.setJarByClass(MRWeb.class);
131         job.waitForCompletion(true);
132     }
133 }

运行:hadoop jar ~/c02mrtest.jar com.mr.test.MRWeb TestData/webcount.txt /DataWorld/webresult 128 1

结果的样子:

MapRedue开发实例_第1张图片

 

3、json数组分析

数据格式(前面以tab分开):

1	[{"name":"A","age":16,"maths":100}]
2	[{"name":"B","age":17,"maths":97}]
3	[{"name":"C","age":18,"maths":89}]
4	[{"name":"D","age":15,"maths":98}]
5	[{"name":"E","age":19,"maths":100}]
 1 package com.mr.test;
 2 
 3 import java.io.IOException;
 4 import org.apache.hadoop.conf.Configuration;
 5 import org.apache.hadoop.fs.Path;
 6 import org.apache.hadoop.io.Text;
 7 import org.apache.hadoop.mapreduce.Job;
 8 import org.apache.hadoop.mapreduce.Mapper;
 9 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
10 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
11 import net.sf.json.JSONArray;
12 import net.sf.json.JSONObject;
13 
14 public class MRString {
15     
16     public static class C03Mapper extends Mapper {
17         @Override
18         protected void map(Object key, Text value, Mapper.Context context)
19                 throws IOException, InterruptedException {
20             String[] line = value.toString().split("\t");
21             if(line.length ==2){
22                 String c = line[0];
23                 String j = line[1];
24                 JSONArray jsonArray =JSONArray.fromObject(j);
25                 int size = jsonArray.size();
26                 for(int i=0;i){
27                     String name = "";
28                     String age = "";
29                     String maths = "";
30                     JSONObject jsonObject =jsonArray.getJSONObject(i);
31                     if(jsonObject.containsKey("name")){
32                         name = jsonObject.getString("name");
33                     }
34                     if(jsonObject.containsKey("age")){
35                         age = jsonObject.getString("age");
36                     }
37                     if(jsonObject.containsKey("maths")){
38                         maths = jsonObject.getString("maths");
39                     }
40                     StringBuffer buffer =new StringBuffer();
41                     buffer.append(name);
42                     buffer.append("\t");
43                     buffer.append(age);
44                     buffer.append("\t");
45                     buffer.append(maths);
46                     context.write(new Text(c), new Text(buffer.toString()));                    
47                 }
48             }            
49         }        
50     }
51 
52     public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
53         //参数含义: agrs[0]标识 in, agrs[1]标识 out,agrs[2]标识 unitmb,agrs[3]
54         if(args.length != 3){
55             System.out.println("error");
56             System.exit(0);
57         }
58         
59         int unitmb =Integer.valueOf(args[2]);
60         String in = args[0];
61         String out = args[1];
62                         
63         Configuration conf = new Configuration();
64         conf.set("mapreduce.input.fileinputformat.split.maxsize", String.valueOf(unitmb * 1024 * 1024));
65         conf.set("mapred.min.split.size", String.valueOf(unitmb * 1024 * 1024));
66         conf.set("mapreduce.input.fileinputformat.split.minsize.per.node", String.valueOf(unitmb * 1024 * 1024));
67         conf.set("mapreduce.input.fileinputformat.split.minsize.per.rack", String.valueOf(unitmb * 1024 * 1024));
68                 
69         Job job = new Job(conf);
70         job.addFileToClassPath(new Path("TestData/json-lib-2.4-jdk15.jar"));
71         job.addFileToClassPath(new Path("TestData/ezmorph-1.0.6.jar"));
72         FileInputFormat.addInputPath(job, new Path(in));
73         FileOutputFormat.setOutputPath(job, new Path(out));
74         job.setMapperClass(C03Mapper.class);
75         //没有reducer的情况下必须设置
76         job.setNumReduceTasks(0);                
77         job.setMapOutputKeyClass(Text.class);
78         job.setMapOutputValueClass(Text.class);
79         job.setOutputKeyClass(Text.class);
80         job.setOutputValueClass(Text.class);
81         job.setJarByClass(MRString.class);
82         job.waitForCompletion(true);
83     }
84 }

运行 hadoop jar ~/c03mrtest.jar com.mr.test.MRString TestData/jsonarray.txt /DataWorld/jsonoutput 128

结果:

MapRedue开发实例_第2张图片

这个例子还有一点值得注意(Path中的目录是HDFS中的目录):

 job.addFileToClassPath(new Path("TestData/json-lib-2.4-jdk15.jar")); //jar文件下载地址:http://json-lib.sourceforge.net/

 job.addFileToClassPath(new Path("TestData/ezmorph-1.0.6.jar")); //jar文件下载地址:http://ezmorph.sourceforge.net/
使用这两句,在程序中动态添加了用于json解析的jar文件,而利用服务器中的ClassPath是访问不到这两个文件的。在编程的时候,在windows客户端下,为了语法书写方便,导入了json-lib-2.4-jdk15.jar,但是并没有导入ezmorph-1.0.6.jar

也就是说,可以在程序中动态的加入jar文件,只要知道了它在HDFS中的位置。

 

你可能感兴趣的:(MapRedue开发实例)