go modules 学习
tags:golang
安装
只需要golang的版本是1.11及之后的,这个模块就内置好了
环境变量
(1) 配置GoLang的GOROOT
(2) 可以不配置GoLang的GOPATH
(3) 配置mod模块的状态
export GO111MODULE=auto
可选值有三个:on:开启,off:关闭,auto:自动
如果是自动模式,文件夹下有go.mod则是开启状态,否则是关闭状态
如果是开启状态,则GOPATH失效
(4) 配置mod的国内代理
#这是阿里的配置
export GOPROXY=https://mirrors.aliyun.com/goproxy/
在goland中的使用
打开goland的设置,然后配置如下:
go_mod.jpg
使用
初始化modules
$ go mod init bitcoin
go: creating new go.mod: module bitcoin
代码编辑
可以引入 GoLang 的官方包,也可以引入非官方包
导入代码需要的依赖
$ go mod tidy
常用命令
$ go help mod
Go mod provides access to operations on modules.
Note that support for modules is built into all the go commands,
not just 'go mod'. For example, day-to-day adding, removing, upgrading,
and downgrading of dependencies should be done using 'go get'.
See 'go help modules' for an overview of module functionality.
Usage:
go mod [arguments]
The commands are:
download download modules to local cache
edit edit go.mod from tools or scripts
graph print module requirement graph
init initialize new module in current directory
tidy add missing and remove unused modules
vendor make vendored copy of dependencies
verify verify dependencies have expected content
why explain why packages or modules are needed
Use "go help mod " for more information about a command.
翻译一下
Go mod提供对模块操作的访问。
注意,所有的go命令都内置了对模块的支持,而不仅仅是"go mod"。例如,日常应该使用"go get"来完成依赖的添加、删除、升级、降级。
更多模块功能的概述,请参阅"go help modules",我把它放在附录里了。
用法:
go mod <命令> [参数]
命令如下:
download 将模块下载到本地缓存
edit 通过工具或脚本编辑"go.mod"
graph 打印模块需求图
init 当前目录下初始化新的模块,后接参数模块名
tidy 添加需要的依赖和删除未使用的依赖
verdor 把依赖项复制到vendor文件中
verify 验证依赖项是否被修改过
why 解释为什么需要包或模块
常见的问题
问题一
$ go mod init
go: cannot determine module path for source directory /Users/shanpengfei/work/go-work-space/src/github.com/shanpengfei7/bitcoin (outside GOPATH, no import comments)
解决方法:init后面应该加上模块的名字
$ go mod init bitcoin
go: creating new go.mod: module bitcoin
问题二
$ go mod init
go: modules disabled inside GOPATH/src by GO111MODULE=auto; see 'go help modules'
$ go mod init bitcoin
go: modules disabled inside GOPATH/src by GO111MODULE=auto; see 'go help modules'
解决方法:不要在$GOPATH
路径下执行该命令。或者换个路径,或者把环境变量中的$GOPATH
置空
附录
看一下官方介绍 go module 的原文:
A module is a collection of related Go packages.
Modules are the unit of source code interchange and versioning.
The go command has direct support for working with modules,
including recording and resolving dependencies on other modules.
Modules replace the old GOPATH-based approach to specifying
which source files are used in a given build.
Preliminary module support
Go 1.11 includes preliminary support for Go modules,
including a new module-aware 'go get' command.
We intend to keep revising this support, while preserving compatibility,
until it can be declared official (no longer preliminary),
and then at a later point we may remove support for work
in GOPATH and the old 'go get' command.
The quickest way to take advantage of the new Go 1.11 module support
is to check out your repository into a directory outside GOPATH/src,
create a go.mod file (described in the next section) there, and run
go commands from within that file tree.
For more fine-grained control, the module support in Go 1.11 respects
a temporary environment variable, GO111MODULE, which can be set to one
of three string values: off, on, or auto (the default).
If GO111MODULE=off, then the go command never uses the
new module support. Instead it looks in vendor directories and GOPATH
to find dependencies; we now refer to this as "GOPATH mode."
If GO111MODULE=on, then the go command requires the use of modules,
never consulting GOPATH. We refer to this as the command being
module-aware or running in "module-aware mode".
If GO111MODULE=auto or is unset, then the go command enables or
disables module support based on the current directory.
Module support is enabled only when the current directory is outside
GOPATH/src and itself contains a go.mod file or is below a directory
containing a go.mod file.
In module-aware mode, GOPATH no longer defines the meaning of imports
during a build, but it still stores downloaded dependencies (in GOPATH/pkg/mod)
and installed commands (in GOPATH/bin, unless GOBIN is set).
Defining a module
A module is defined by a tree of Go source files with a go.mod file
in the tree's root directory. The directory containing the go.mod file
is called the module root. Typically the module root will also correspond
to a source code repository root (but in general it need not).
The module is the set of all Go packages in the module root and its
subdirectories, but excluding subtrees with their own go.mod files.
The "module path" is the import path prefix corresponding to the module root.
The go.mod file defines the module path and lists the specific versions
of other modules that should be used when resolving imports during a build,
by giving their module paths and versions.
For example, this go.mod declares that the directory containing it is the root
of the module with path example.com/m, and it also declares that the module
depends on specific versions of golang.org/x/text and gopkg.in/yaml.v2:
module example.com/m
require (
golang.org/x/text v0.3.0
gopkg.in/yaml.v2 v2.1.0
)
The go.mod file can also specify replacements and excluded versions
that only apply when building the module directly; they are ignored
when the module is incorporated into a larger build.
For more about the go.mod file, see 'go help go.mod'.
To start a new module, simply create a go.mod file in the root of the
module's directory tree, containing only a module statement.
The 'go mod init' command can be used to do this:
go mod init example.com/m
In a project already using an existing dependency management tool like
godep, glide, or dep, 'go mod init' will also add require statements
matching the existing configuration.
Once the go.mod file exists, no additional steps are required:
go commands like 'go build', 'go test', or even 'go list' will automatically
add new dependencies as needed to satisfy imports.
The main module and the build list
The "main module" is the module containing the directory where the go command
is run. The go command finds the module root by looking for a go.mod in the
current directory, or else the current directory's parent directory,
or else the parent's parent directory, and so on.
The main module's go.mod file defines the precise set of packages available
for use by the go command, through require, replace, and exclude statements.
Dependency modules, found by following require statements, also contribute
to the definition of that set of packages, but only through their go.mod
files' require statements: any replace and exclude statements in dependency
modules are ignored. The replace and exclude statements therefore allow the
main module complete control over its own build, without also being subject
to complete control by dependencies.
The set of modules providing packages to builds is called the "build list".
The build list initially contains only the main module. Then the go command
adds to the list the exact module versions required by modules already
on the list, recursively, until there is nothing left to add to the list.
If multiple versions of a particular module are added to the list,
then at the end only the latest version (according to semantic version
ordering) is kept for use in the build.
The 'go list' command provides information about the main module
and the build list. For example:
go list -m # print path of main module
go list -m -f={{.Dir}} # print root directory of main module
go list -m all # print build list
Maintaining module requirements
The go.mod file is meant to be readable and editable by both
programmers and tools. The go command itself automatically updates the go.mod file
to maintain a standard formatting and the accuracy of require statements.
Any go command that finds an unfamiliar import will look up the module
containing that import and add the latest version of that module
to go.mod automatically. In most cases, therefore, it suffices to
add an import to source code and run 'go build', 'go test', or even 'go list':
as part of analyzing the package, the go command will discover
and resolve the import and update the go.mod file.
Any go command can determine that a module requirement is
missing and must be added, even when considering only a single
package from the module. On the other hand, determining that a module requirement
is no longer necessary and can be deleted requires a full view of
all packages in the module, across all possible build configurations
(architectures, operating systems, build tags, and so on).
The 'go mod tidy' command builds that view and then
adds any missing module requirements and removes unnecessary ones.
As part of maintaining the require statements in go.mod, the go command
tracks which ones provide packages imported directly by the current module
and which ones provide packages only used indirectly by other module
dependencies. Requirements needed only for indirect uses are marked with a
"// indirect" comment in the go.mod file. Indirect requirements are
automatically removed from the go.mod file once they are implied by other
direct requirements. Indirect requirements only arise when using modules
that fail to state some of their own dependencies or when explicitly
upgrading a module's dependencies ahead of its own stated requirements.
Because of this automatic maintenance, the information in go.mod is an
up-to-date, readable description of the build.
The 'go get' command updates go.mod to change the module versions used in a
build. An upgrade of one module may imply upgrading others, and similarly a
downgrade of one module may imply downgrading others. The 'go get' command
makes these implied changes as well. If go.mod is edited directly, commands
like 'go build' or 'go list' will assume that an upgrade is intended and
automatically make any implied upgrades and update go.mod to reflect them.
The 'go mod' command provides other functionality for use in maintaining
and understanding modules and go.mod files. See 'go help mod'.
The -mod build flag provides additional control over updating and use of go.mod.
If invoked with -mod=readonly, the go command is disallowed from the implicit
automatic updating of go.mod described above. Instead, it fails when any changes
to go.mod are needed. This setting is most useful to check that go.mod does
not need updates, such as in a continuous integration and testing system.
The "go get" command remains permitted to update go.mod even with -mod=readonly,
and the "go mod" commands do not take the -mod flag (or any other build flags).
If invoked with -mod=vendor, the go command assumes that the vendor
directory holds the correct copies of dependencies and ignores
the dependency descriptions in go.mod.
Pseudo-versions
The go.mod file and the go command more generally use semantic versions as
the standard form for describing module versions, so that versions can be
compared to determine which should be considered earlier or later than another.
A module version like v1.2.3 is introduced by tagging a revision in the
underlying source repository. Untagged revisions can be referred to
using a "pseudo-version" like v0.0.0-yyyymmddhhmmss-abcdefabcdef,
where the time is the commit time in UTC and the final suffix is the prefix
of the commit hash. The time portion ensures that two pseudo-versions can
be compared to determine which happened later, the commit hash identifes
the underlying commit, and the prefix (v0.0.0- in this example) is derived from
the most recent tagged version in the commit graph before this commit.
There are three pseudo-version forms:
vX.0.0-yyyymmddhhmmss-abcdefabcdef is used when there is no earlier
versioned commit with an appropriate major version before the target commit.
(This was originally the only form, so some older go.mod files use this form
even for commits that do follow tags.)
vX.Y.Z-pre.0.yyyymmddhhmmss-abcdefabcdef is used when the most
recent versioned commit before the target commit is vX.Y.Z-pre.
vX.Y.(Z+1)-0.yyyymmddhhmmss-abcdefabcdef is used when the most
recent versioned commit before the target commit is vX.Y.Z.
Pseudo-versions never need to be typed by hand: the go command will accept
the plain commit hash and translate it into a pseudo-version (or a tagged
version if available) automatically. This conversion is an example of a
module query.
Module queries
The go command accepts a "module query" in place of a module version
both on the command line and in the main module's go.mod file.
(After evaluating a query found in the main module's go.mod file,
the go command updates the file to replace the query with its result.)
A fully-specified semantic version, such as "v1.2.3",
evaluates to that specific version.
A semantic version prefix, such as "v1" or "v1.2",
evaluates to the latest available tagged version with that prefix.
A semantic version comparison, such as "=v1.5.6",
evaluates to the available tagged version nearest to the comparison target
(the latest version for < and <=, the earliest version for > and >=).
The string "latest" matches the latest available tagged version,
or else the underlying source repository's latest untagged revision.
A revision identifier for the underlying source repository,
such as a commit hash prefix, revision tag, or branch name,
selects that specific code revision. If the revision is
also tagged with a semantic version, the query evaluates to
that semantic version. Otherwise the query evaluates to a
pseudo-version for the commit.
All queries prefer release versions to pre-release versions.
For example, "
欢迎阅读单鹏飞的学习笔记