问题: 二叉树是否只有一种遍历方式 (层次遍历)?
典型的二叉树遍历方式
- 先序遍历 (Pre-Order Traversal)
- 中序遍历 (In-Order Traversal)
- 后序遍历 (Post-order Traversal)
先序遍历 (Pre-Order Traversal)
二叉树为空
- 无操作,直接返回
二叉树不为空
- 访问根结点中的数据元素
- 先序遍历左子树
- 先序遍历右子树
先序遍历功能定义
preOrderTraversal(node)
{
if (node != NULL)
{
access(node->value);
preOrderTraversal(node->left);
preOrderTraversal(node->right);
}
}
中序遍历 (In-Order Traversal)
二叉树为空
- 无操作,直接返回
二叉树不为空
- 中序遍历左子树
- 访问根结点中的数据元素
- 中序遍历右子树
中序遍历功能定义
inOrderTraversal(node)
{
if (node != NULL)
{
inOrderTraversal(node->left);
access(node->value);
inOrderTraversal(node->right);
}
}
后序遍历 (Post-Order Traversal)
二叉树为空
- 无操作,直接返回
二叉树不为空
- 后序遍历左子树
- 后序遍历右子树
- 访问根结点中的数据元素
后序遍历功能定义
postOrderTraversal(node)
{
postOrderTraversal(node->left);
postOrderTraversal(node->right);
access(node->value);
}
问题:是否可以将二叉树的典型遍历算法集成到 BTree 中?如果可以,代码需要做怎样的改动
设计要点
- 不能与层次遍历函数冲突,必须设计新的函数接口
- 算法执行完成后,能够方便的获得遍历结果
- 遍历结果能够反映结点的先后次序
函数结构设计
SharedPointer
> traversal(BTTraversal order)
- 根据参数 order 选择遍历算法(先序,中序,后序)
- 返回值为堆中的数组对象(生命期由智能指针管理)
- 数组元素的次序反应遍历的先后次序
典型遍历示例
SharedPointer> sp = NULL;
sp = tree.traversal(PreOrder);
for (int i=0; i<(*sp).length(); ++i)
{
cout << (*sp)[i] << endl;
}
编程实验:二叉树的典型遍历方式
文件:BTree.h
#ifndef BTREE_H
#define BTREE_H
#include "Tree.h"
#include "BTreeNode.h"
#include "Exception.h"
#include "LinkQueue.h"
#include "DynamicArray.h"
namespace DTLib
{
enum BTTraversal
{
PreOrder,
InOrder,
PostOrder
};
template
class BTree : public Tree
{
public:
BTree() = default;
bool insert(TreeNode *node) override
{
return insert(node, ANY);
}
virtual bool insert(TreeNode *node, BTNodePos pos)
{
bool ret = true;
if (node != nullptr)
{
if (this->m_root == nullptr)
{
node->parent = nullptr;
this->m_root = node;
}
else
{
BTreeNode *np = find(node->parent);
if (np != nullptr)
{
ret = insert(dynamic_cast*>(node), np, pos);
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Invalid parent tree node ...");
}
}
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Parameter can not be null ...");
}
return ret;
}
bool insert(const T &value, TreeNode *parent) override
{
return insert(value, parent, ANY);
}
virtual bool insert(const T &value, TreeNode *parent, BTNodePos pos)
{
bool ret = true;
BTreeNode *node = BTreeNode::NewNode();
if (node != nullptr)
{
node->value = value;
node->parent = parent;
ret = insert(node, pos);
if (!ret)
{
delete node;
}
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No enough memory to create node ...");
}
return ret;
}
SharedPointer> remove(const T &value) override
{
BTree *ret = nullptr;
BTreeNode *node = find(value);
if (node != nullptr)
{
remove(node, ret);
m_queue.clear();
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Can not find the tree node via value ...");
}
return ret;
}
SharedPointer> remove(TreeNode *node) override
{
BTree *ret = nullptr;
node = find(node);
if (node != nullptr)
{
remove(dynamic_cast*>(node), ret);
m_queue.clear();
}
else
{
THROW_EXCEPTION(InvalidParameterExcetion, "Parameter node is invalid ...");
}
return ret;
}
BTreeNode* find(const T &value) const override
{
return find(root(), value);
}
BTreeNode* find(TreeNode *node) const override
{
return find(root(), dynamic_cast*>(node));
}
BTreeNode* root() const override
{
return dynamic_cast*>(this->m_root);
}
int degree() const override
{
return degree(root());
}
int count() const override
{
return count(root());
}
int height() const override
{
return height(root());
}
void clear() override
{
free(root());
this->m_root = nullptr;
}
bool begin() override
{
bool ret = (root() != nullptr);
if (ret)
{
m_queue.clear();
m_queue.add(root());
}
return ret;
}
bool end() override
{
return (m_queue.length() == 0);
}
bool next() override
{
bool ret = (m_queue.length() > 0);
if (ret)
{
BTreeNode *node = m_queue.front();
m_queue.remove();
if (node->left != nullptr)
{
m_queue.add(node->left);
}
if (node->right != nullptr)
{
m_queue.add(node->right);
}
}
return ret;
}
T current() override
{
if (!end())
{
return m_queue.front()->value;
}
else
{
THROW_EXCEPTION(InvalidOpertionExcetion, "No value at current position ...");
}
}
SharedPointer> traversal(BTTraversal order) const
{
DynamicArray *ret = nullptr;
LinkQueue*> queue;
switch (order)
{
case PreOrder:
PreOrderTraversal(root(), queue);
break;
case InOrder:
InOrderTraversal(root(), queue);
break;
case PostOrder:
PostOrderTraversal(root(), queue);
break;
}
ret = new DynamicArray(queue.length());
if (ret != nullptr)
{
for (int i=0; ilength(); ++i, queue.remove())
{
ret->set(i, queue.front()->value);
}
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No enough to create return array ...");
}
return ret;
}
~BTree()
{
clear();
}
protected:
LinkQueue*> m_queue;
BTree(const BTree&) = default;
BTree& operator = (const BTree&) = default;
virtual BTreeNode* find(BTreeNode *node, const T &value) const
{
BTreeNode *ret = nullptr;
if (node != nullptr)
{
if (node->value == value)
{
ret = node;
}
else
{
if (ret == nullptr)
{
ret = find(node->left, value);
}
if (ret == nullptr)
{
ret = find(node->right, value);
}
}
}
return ret;
}
virtual BTreeNode* find(BTreeNode *node, BTreeNode *obj) const
{
BTreeNode *ret = nullptr;
if (node == obj)
{
ret = node;
}
else
{
if (node != nullptr)
{
if (ret == nullptr)
{
ret = find(node->left, obj);
}
if (ret == nullptr)
{
ret = find(node->right, obj);
}
}
}
return ret;
}
virtual bool insert(BTreeNode *node, BTreeNode *np, BTNodePos pos)
{
bool ret = true;
if (pos == ANY)
{
if (np->left == nullptr)
{
np->left = node;
}
else if (np->right == nullptr)
{
np->right = node;
}
else
{
ret = false;
}
}
else if (pos == LEFT)
{
if (np->left == nullptr)
{
np->left = node;
}
else
{
ret = false;
}
}
else if (pos == RIGHT)
{
if (np->right == nullptr)
{
np->right = node;
}
else
{
ret = false;
}
}
return ret;
}
virtual void remove(BTreeNode *node, BTree *&ret)
{
ret = new BTree();
if (ret != nullptr)
{
if (root() == node)
{
this->m_root = nullptr;
}
else
{
BTreeNode *parent = dynamic_cast*>(node->parent);
if (node == parent->left)
{
parent->left = nullptr;
}
else if (node == parent->right)
{
parent->right = nullptr;
}
node->parent = nullptr;
}
ret->m_root = node;
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create btree ...");
}
}
virtual void free(BTreeNode *node)
{
if (node != nullptr)
{
free(node->left);
free(node->right);
if (node->flag())
{
delete node;
}
}
}
int count(BTreeNode *node) const
{
return (node != nullptr) ? (count(node->left) + count(node->right) + 1) : 0;
}
int height(BTreeNode *node) const
{
int ret = 0;
if (node != nullptr)
{
int lh = height(node->left);
int rh = height(node->right);
ret = ((lh > rh) ? lh : rh) + 1;
}
return ret;
}
int degree(BTreeNode *node) const
{
int ret = 0;
if (node != nullptr)
{
BTreeNode *child[] = {node->left, node->right};
ret = !!node->left + !!node->left;
for (int i=0; (i<2) && (ret<2); ++i)
{
int d = degree(child[i]);
if (ret < d)
{
ret = d;
}
}
}
return ret;
}
void PreOrderTraversal(BTreeNode *node, LinkQueue*> &queue) const
{
if (node != nullptr)
{
queue.add(node);
PreOrderTraversal(node->left, queue);
PreOrderTraversal(node->right, queue);
}
}
void InOrderTraversal(BTreeNode *node, LinkQueue*> &queue) const
{
if (node != nullptr)
{
InOrderTraversal(node->left, queue);
queue.add(node);
InOrderTraversal(node->right, queue);
}
}
void PostOrderTraversal(BTreeNode *node, LinkQueue*> &queue) const
{
if (node != nullptr)
{
PostOrderTraversal(node->left, queue);
PostOrderTraversal(node->right, queue);
queue.add(node);
}
}
};
}
#endif // BTREE_H
文件:main.cpp
#include
#include "BTreeNode.h"
#include "BTree.h"
using namespace std;
using namespace DTLib;
int main()
{
BTree bt;
BTreeNode *n = nullptr;
bt.insert(1, nullptr);
n = bt.find(1);
bt.insert(2, n);
bt.insert(3, n);
n = bt.find(2);
bt.insert(4, n);
bt.insert(5, n);
n = bt.find(4);
bt.insert(8, n);
bt.insert(9, n);
n = bt.find(5);
bt.insert(10, n);
n = bt.find(3);
bt.insert(6, n);
bt.insert(7, n);
for (bt.begin(); !bt.end(); bt.next())
{
cout << bt.current() << " ";
}
cout << endl;
SharedPointer> sp1 = bt.traversal(PreOrder);
for (int i=0; i<(*sp1).length(); ++i)
{
cout << (*sp1)[i] << " ";
}
cout << endl;
SharedPointer> sp2 = bt.traversal(InOrder);
for (int i=0; i<(*sp2).length(); ++i)
{
cout << (*sp2)[i] << " ";
}
cout << endl;
SharedPointer> sp3 = bt.traversal(PostOrder);
for (int i=0; i<(*sp3).length(); ++i)
{
cout << (*sp3)[i] << " ";
}
cout << endl;
return 0;
}
输出:
1 2 3 4 5 6 7 8 9 10
1 2 4 8 9 5 10 3 6 7
8 4 9 2 10 5 1 6 3 7
8 9 4 10 5 2 6 7 3 1
小结
- 二叉树的典型遍历都是以递归方式执行的
- BTree 以不同的函数接口支持典型遍历
- 层次遍历与典型遍历互不冲突
- 遍历结果能够反映树结点的先后次序
思考: 如何遍历 BTree (二叉树结构) 的每一个结点?
以上内容整理于狄泰软件学院系列课程,请大家保护原创!