A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Solution1:DP
思路:
Time Complexity: O(mn) Space Complexity: O(mn)
Solution2:DP with space optimization
思路:
Time Complexity: O(mn) Space Complexity: O(2n)
Solution3:DP with space optimization
思路:
Time Complexity: O(mn) Space Complexity: O(n)
Solution1 Code:
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++){
map[i][0] = 1;
}
for(int j = 0; j < n; j++){
map[0][j] = 1;
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
map[i][j] = map[i - 1][j] + map[i][j - 1];
}
}
return map[m - 1][n - 1];
}
}
Solution2 Code:
class Solution {
public int uniquePaths(int m, int n) {
if (m < n) return uniquePaths(n, m); // keep n smaller for less memory usage
int[] pre = new int[n];
int[] cur = new int[n];
Arrays.fill(pre, 1);
/*
for(int i = 0; i < n; i++) {
pre[i] = 1;
}
*/
cur[0] = 1;
// dp starts
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
cur[j] = cur[j - 1] + pre[j];
}
int[] tmp = pre;
pre = cur;
cur = tmp;
}
return pre[n - 1];
}
}
Solution3 Code:
class Solution {
public int uniquePaths(int m, int n) {
if (m < n) return uniquePaths(n, m); // keep n smaller for less memory usage
int[] row = new int[n];
Arrays.fill(row, 1);
// dp starts
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
row[j] += row[j - 1];
}
}
return row[n - 1];
}
}