Description
Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.
Example 1:
Input: [23, 2, 4, 6, 7], k=6
Output: True
Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
Example 2:
Input: [23, 2, 6, 4, 7], k=6
Output: True
Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
Note:
- The length of the array won't exceed 10,000.
- You may assume the sum of all the numbers is in the range of a signed 32-bit integer.
Solution
Pre-sum + Two-pointer, time O(n ^ 2), space O(n)
注意要对k == 0的情况单独处理!x % 0是非法的。另外k也可能为负数哦,别忘记了。
class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
if (nums == null || nums.length < 2) {
return false;
}
int n = nums.length;
int[] sum = new int[n + 1];
for (int i = 0; i < n; ++i) {
sum[i + 1] = sum[i] + nums[i];
}
for (int i = 0; i <= n - 2; ++i) {
for (int j = i + 2; j <= n; ++j) {
if ((k == 0 && sum[i] == sum[j]) || (k != 0 && (sum[j] - sum[i]) % k == 0)) {
return true;
}
}
}
return false;
}
}
Pre-sum + HashMap, time O(n), space O(n)
class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
if (nums == null || nums.length < 2) {
return false;
}
Map sum2Idx = new HashMap<>();
sum2Idx.put(0, -1);
int sum = 0;
for (int i = 0; i < nums.length; ++i) {
sum += nums[i];
if (k != 0) {
sum %= k; // tricky
}
if (sum2Idx.containsKey(sum)) {
if (i - sum2Idx.get(sum) > 1) {
return true;
}
} else {
sum2Idx.put(sum, i);
}
}
return false;
}
}