数据结构之二叉树

数据结构之二叉树

本文讲解二叉树的基本操作:

  • 查找节点
  • 计算树的高度
  • 清空树
  • 递归遍历:先序遍历、中序遍历、后序遍历
  • 按层遍历
  • 前序、中序的非递归遍历
  • 树的左旋和右旋

来看一下树的结构:

class TreeNode {
    String value;
    TreeNode left;
    TreeNode right;
    public TreeNode() {
        
    }
    public TreeNode(String value) {
        this.value = value;
    }
}

首先,为了方便后面看到效果,先手动初始化一个有4个节点的二叉树:

Tree tree = new Tree();
TreeNode root = new TreeNode("root");
TreeNode node1 = new TreeNode("ndoe1");
TreeNode node2 = new TreeNode("ndoe2");
TreeNode node3 = new TreeNode("ndoe3");
root.left = node1;
root.right = node2;
node1.left = node3;

1. 查找节点

//查找节点
public TreeNode findNode(TreeNode treeNode, String value) {
  if(null == treeNode)
    return null;

  if(treeNode.value.equals(value))
    return treeNode;

  TreeNode leftNode = findNode(treeNode.left, value);//递归左子树
  TreeNode rightNode = findNode(treeNode.right, value);//递归右子树
  if(leftNode.value.equals(value))
    return leftNode;
  if(rightNode.value.equals(value))
    return rightNode;

  return null;
}

2. 计算树的深度

//计算树的深度
//递归方法
public int deepth(TreeNode treeNode) {
  if(treeNode == null)
    return 0;
  int left = deepth(treeNode.left);
  int right = deepth(treeNode.right);
  return left > right? left + 1: right + 1;
}

3. 清空树

//清空二叉树
public void clearTreeNode(TreeNode treeNode) {
  if(null != treeNode) {
    clearTreeNode(treeNode.left);
    clearTreeNode(treeNode.right);
    treeNode = null;
  }
}

4. 递归遍历

//遍历1 先序遍历
public void showDLR(TreeNode treeNode) {
  if(null != treeNode) {
    showData(treeNode);
    showDLR(treeNode.left);
    showDLR(treeNode.right);
  }
}
//遍历2 中序遍历
public void showLDR(TreeNode treeNode) {
  if(null != treeNode) {
    showLDR(treeNode.left);
    showData(treeNode);
    showLDR(treeNode.right);
  }
}
//遍历3 后序遍历
public void showLRD(TreeNode treeNode) {
  if(null != treeNode) {
    showLRD(treeNode.left);
    showLRD(treeNode.right);
    showData(treeNode);
  }
}

5. 按层遍历

//遍历4 按层遍历 借助队列 先进先出
public void showByLevel(TreeNode treeNode) {
  if(null == treeNode)
    return;

  LinkedList list = new LinkedList<>();
  TreeNode current;
  list.offer(treeNode);//将根节点入队

  while(!list.isEmpty()) {
    current = list.poll();//队首出队
    showData(current);//打印节点
    if(null != current.left) {
      list.offer(current.left);
    }
    if(null != current.right) {
      list.offer(current.right);
    }
  }
}

运行结果:

树的深度是:3
先序遍历:
root-->ndoe1-->ndoe3-->ndoe2-->
中序遍历:
ndoe3-->ndoe1-->root-->ndoe2-->
后序遍历:
ndoe3-->ndoe1-->ndoe2-->root-->
按层遍历
root-->ndoe1-->ndoe2-->ndoe3-->

6. 先序,中序遍历的非递归实现

//遍历5 前序遍历的非递归实现
public void showDLRNotRecursion(TreeNode treeNode) {
  Stack stack = new Stack<>();
  TreeNode node = treeNode;
  while(null != node || stack.size() >0) {
    while(null != node) {
      showData(node);
      stack.push(node);
      node = node.left;
    }
    if(stack.size() > 0) {
      node = stack.pop();
      node = node.right;
    }
  }
}
//遍历6  中序遍历的非递归实现
public void showLDRNotRecursion(TreeNode treeNode) {
  Stack stack = new Stack<>();
  TreeNode node = treeNode;
  while(null != node || stack.size() > 0) {
    while(null != node) {
      stack.push(node);
      node = node.left;
    }
    if(stack.size() > 0) {
      node = stack.pop();
      showData(node);
      node = node.right;
    }
  }
}

7. 二叉树的左旋和右旋

  • 左旋:节点右儿子的左儿子(若存在)变为节点的右儿子,节点变为右儿子的左儿子;
  • 右旋:节点左二子的右儿子(若存在)变为节点的左二子,节点变为左二子的右儿子。

举个例子:

数据结构之二叉树_第1张图片
二叉树的左旋右旋.png

可以看到,如果旋转前是一个二叉排序树,那么旋转后仍然是一个二叉排序树。

你可能感兴趣的:(数据结构之二叉树)