从源码理解Android Handler消息机制

一、概述

上篇内容给大家分享了HandlerThread和IntentService,那篇文章的理解需要基于Handler机制,本篇内容就写点Handler相关的内容,如果你已经理解Handler的工作机制,本篇内容可以绕过。

大家在Android应用开发过程中,对Handler使用是比较多的,但大多情况下是用于线程之间的切换,但线程之间的通信是如何做到切换呢?本文将给大家分享下Handler的工作原理。

二、源码分析

本文就不给大家讲解Handler如何使用了,Talk is cheap,Show me the code.

如果给大家讲Handler如何使用,那就显得太没有逼格了,废话不说,直接上Handler的构造函数源码:

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();//获得Looper
        if (mLooper == null) {//如果没有Looper 将会报运行异常
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }


   //Looper 中的myLooper()方法
  public static @Nullable Looper myLooper() {
     //从ThreadLocal中获取该Looper ThreadLocal的原理后边给大家
     //ThreadLocal 你可以理解为保存一个在线程范围内可见的变量  我们把Looper的实例保存了进去
        return sThreadLocal.get();分析
    }


   //sendMessage(Message msg)方法最终会调用该方法
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;//target 赋值
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);//最终执行的是MessageQueue的enqueueMessage方法
    }

从Handler的源码中可以看出:

  1. 获得当前线程Looper;
  2. 如果当前线程没有Looper 报运行时异常;
  3. sendMessage方法最终是往MessageQueue队列中添加Message节点;
  4. 加入队列前,为Message的target赋值。

说明Handler的工作离不开Looper。那Looper是什么呢?
我们先瞅瞅HandlerThread是如何使用Looper的:

//HandlerThread 中run()方法如下
 @Override
    public void run() {
        mTid = Process.myTid();
        Looper.prepare();//先调用prepare()静态方法 该方法会启动一个可以终止的Looper
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();;//再调用loop()静态方法
        mTid = -1;
    }

接下来我们瞅下Looper的源码(省略部分方法和注释):

public final class Looper {
  
    final MessageQueue mQueue;//从名字看 是一个消息队列
    final Thread mThread;

    private Printer mLogging;
    private long mTraceTag;

    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {//参数表示该Looper是否可以终止
        if (sThreadLocal.get() != null) {//一个线程只能有一个Looper
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));//为线程范围内保存Looper实例
    }
   //Android主线程保存了一个不可以停止的Looper
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {//线程同步
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

    public static Looper getMainLooper() {
        synchronized (Looper.class) {
            return sMainLooper;
        }
    }

   //该方法是启动Looper的循环
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;//获取Looper的消息队列

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {//核心部分  启动一个死循环 
            Message msg = queue.next(); // 可能会阻塞
            if (msg == null) {//如果msg 为null  该死循环将被终止
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {
              //msg的target变量调用dispatchMessage()方法,这时你估计能猜到target是一个Handler对象,后边验证我们的猜想
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

 
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

  
    public static @NonNull MessageQueue myQueue() {
        return myLooper().mQueue;
    }

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

   //停止Looper主要通过改变MessageQueue中的mQuitting 状态,如果该状态为true,则next()方法返回null来停止Looper的死循环.
    public void quit() {
        mQueue.quit(false);
    }

    public void quitSafely() {
        mQueue.quit(true);
    }


   
    }




  

从Looper我们可以看出:

  1. 内部有一个静态ThreadLocal sThreadLocal变量,用于存储Looper实例
  2. 保存了一个MessageQueue mQueue属性变量,从名字看是一个消息队列;
  3. 调用prepareMainLooper()或者prepare()方法, 主要在sThreadLocal存储Looper实例对象;
  4. 调用loop()方法,启动一个死循环,从mQueue队列中取消息,这步可能阻塞死循环。
  5. 停止Looper主要通过改变MessageQueue中的mQuitting 状态,如果该值为true,则next()方法返回null来停止Looper的死循环.

接下来我们看下MessageQueue 的实现,主要看两个方法 next()和enqueueMessage(),先看next()方法:

 Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;//在遍历过程中记录下次遍历时间点
        for (;;) {//也是死循环
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);//调用native方法 

            synchronized (this) {//线程同步遍历队列 与放消息时达到线程安全
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {//msg.target ==null ?入队列时候为null会报空异常 要语句块始终不会运行?
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                   //从队列中找异步的消息,Message的flag状态有关
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                       //该消息还没到时间执行,计算出下次的监测时间
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;//从队列中移除消息,由此可见,该队列是一个单项队列
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;//返回消息 跳出该循环
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {//跟Looper的quite()方法有关 前边讲过 msg == null的话 ,Looper会终止循环
                    dispose();
                    return null;
                }
                //主要用于处理 IdleHandler
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {//没有IdleHandler 就直接下次循环
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

           
            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {//遍历IdleHandler
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();//调用IdleHandler 的queueIdle()方法 返回值决定了是否保留该IdleHandler 
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);//移除该queueIdle
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

在MessageQueue的next()方法中主要做了:

  1. 遍历Message队列,找到要执行的Message返回;
  2. 未找到Message,则计算出要阻塞时间,然后在native方法中阻塞;
  3. 每次遍历Message都会遍历IdleHandler;
  4. 如果mIdleHandlers列表不为null,则nextPollTimeoutMillis会为0,表明下次不会阻塞;

下边看下Message的enqueueMessage 方法:

    boolean enqueueMessage(Message msg, long when) {
       //msg.target不能为null  但next()方法体中有一个判断当当改值为null的情况不是很理解,欢迎大家讨论
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {//同步插入队列
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse(); //标记消息为使用状态
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {//队列为null情况
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {//不为null情况
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {//根据Message的wen绝对在队列中的位置
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

Message的enqueueMessage中主要做了:

  1. 判断target是否为null,为空则跑出异常,不明白next()方法中if (msg != null && msg.target == null)该语句块是否会执行,欢迎评论来讨论;
  2. 根据when来决定消息在队列中的位置,取消息和放消息都在同步块中执行;

Message 的quit()方法:


 void quit(boolean safe) {
        if (!mQuitAllowed) {
            throw new IllegalStateException("Main thread not allowed to quit.");
        }

        synchronized (this) {//获得同步对象锁
            if (mQuitting) {
                return;
            }
            mQuitting = true;//修改状态

            if (safe) {
                removeAllFutureMessagesLocked();//安全结束
            } else {
                removeAllMessagesLocked();//不安全结束
            }

            // We can assume mPtr != 0 because mQuitting was previously false.
            nativeWake(mPtr);//唤醒阻塞,来执行剩余任务
        }


   private void removeAllMessagesLocked() {//清楚链表 回收消息
        Message p = mMessages;
        while (p != null) {
            Message n = p.next;
            p.recycleUnchecked();
            p = n;
        }
        mMessages = null;
    }

    private void removeAllFutureMessagesLocked() {
        final long now = SystemClock.uptimeMillis();
        Message p = mMessages;
        if (p != null) {
            if (p.when > now) {//p.when > now 清除链表
                removeAllMessagesLocked();
            } else {//p.when <= now
                Message n;
                for (;;) {//改循环找出p.when > now的节点
                    n = p.next;
                    if (n == null) {
                        return;
                    }
                    if (n.when > now) {
                        break;
                    }
                    p = n;
                }
                p.next = null;
                do {
                    p = n;
                    n = p.next;
                    p.recycleUnchecked();
                } while (n != null);//清除没到执行点的节点
            }
        }
    }

Message的quit()主要做了:

  1. 不安全结束的做法是直接清除队列,然后唤起阻塞;
  2. 安全结束的方法是找出所有的执行节点,把未到执行时间的节点清理掉,然后唤醒阻塞;

三、结语

我们可以把Handler消息机制理解为生产消费模型:

  1. Handler是生产者,主要往MessageQueue中存放消息;
  2. Looper为消费者,主要从MessageQueue中消费消息;

以上就是为大家分享的Handler消息机制,感谢你的耐心阅读,如有错误,欢迎指正。如果本文对你有帮助,记得点赞。欢迎关注我的微信公众号。


从源码理解Android Handler消息机制_第1张图片
qrcode_for_gh_84a02a29fedd_430.jpg

你可能感兴趣的:(从源码理解Android Handler消息机制)