Maximum subarray problem--Kadane’s Algorithm

Maximum subarray problem--Kadane’s Algorithm](http://www.cnblogs.com/xubenben/p/3403597.html)

https://en.wikipedia.org/wiki/Maximum_subarray_problem

Kadane's algorithm[edit]

Kadane's algorithm begins with a simple inductive question: if we know the maximum subarray sum ending at position {\displaystyle i}

i
, what is the maximum subarray sum ending at position {\displaystyle i+1}
i+1
? The answer turns out to be relatively straightforward: either the maximum subarray sum ending at position {\displaystyle i+1}
i+1
includes the maximum subarray sum ending at position {\displaystyle i}
i
as a prefix, or it doesn't. Thus, we can compute the maximum subarray sum ending at position {\displaystyle i}
i
for all positions {\displaystyle i}
i
by iterating once over the array. As we go, we simply keep track of the maximum sum we've ever seen. Thus, the problem can be solved with the following code, expressed here in Python:

def max_subarray(A):
    max_ending_here = max_so_far = A[0]
    for x in A[1:]:
        max_ending_here = max(x, max_ending_here + x)
        max_so_far = max(max_so_far, max_ending_here)
    return max_so_far

The algorithm can also be easily modified to keep track of the starting and ending indices of the maximum subarray (when max_so_far changes) as well as the case where we want to allow zero-length subarrays (with implicit sum 0) if all elements are negative.

Because of the way this algorithm uses optimal substructures (the maximum subarray ending at each position is calculated in a simple way from a related but smaller and overlapping subproblem: the maximum subarray ending at the previous position) this algorithm can be viewed as a simple/trivial example of dynamic programming.

The runtime complexity of Kadane's algorithm is {\displaystyle O(n)}
O(n)

.

Here, I describe variants of Kadane’s algorithm to solve the maximum subarray and the minimum subarray problems. The maximum subarray problem is to find the contiguous subarray having the largest sum. Likewise, the minimum subarray problem is to find the contiguous subarray having the smallest sum. Variants of Kadane’s algorithm can solve these problems in O(N) time.

Kadane’s algorithm uses the dynamic programming approach to find the maximum (minimum) subarray ending at each position from the maximum (minimum) subarray ending at the previous position.

#include 
   2:  #include 
   3:  using namespace std;
   4:   
   5:  int maxSum(int *A, int lo, int hi)  {
   6:      int left = lo, right = lo, sum = INT_MIN, currentMaxSum = 0, maxLeft = lo, maxRight = lo;
   7:      for(int i = lo; i < hi; i++)    {
   8:          currentMaxSum += A[i];
   9:          if(currentMaxSum > sum) {
  10:              sum = currentMaxSum;
  11:              right = i;
  12:              maxLeft = left;
  13:              maxRight = right;
  14:          }
  15:          if(currentMaxSum < 0)   {
  16:              left = i+1;
  17:              right = left;
  18:              currentMaxSum = 0;
  19:          }
  20:      }
  21:      printf("Maximum sum contiguous subarray :");
  22:      for(int i = maxLeft; i <= maxRight; i++)
  23:          printf(" %d", A[i]);
  24:      printf("\n");
  25:      return sum;
  26:  }
  27:   
  28:  int minSum(int *A, int lo, int hi)  {
  29:      int left = lo, right = lo, sum = INT_MAX, currentMinSum = 0, minLeft = lo, minRight = lo;
  30:      for(int i = lo; i < hi; i++)    {
  31:          currentMinSum += A[i];
  32:          if(currentMinSum < sum) {
  33:              sum = currentMinSum;
  34:              right = i;
  35:              minLeft = left;
  36:              minRight = right;
  37:          }
  38:          if(currentMinSum > 0)   {
  39:              left = i+1;
  40:              right = left;
  41:              currentMinSum = 0;
  42:          }
  43:      }
  44:      printf("Minimum sum contiguous subarray :");
  45:      for(int i = minLeft; i <= minRight; i++)
  46:          printf(" %d", A[i]);
  47:      printf("\n");
  48:      return sum;
  49:  }
  50:   
  51:  int main()  {
  52:      int A[] = {3, 4, -3, -2, 6};
  53:      int N = sizeof(A) / sizeof(int);
  54:   
  55:      printf("Maximum sum : %d\n", maxSum(A, 0, N));
  56:      printf("Minimum sum : %d\n", minSum(A, 0, N));
  57:   
  58:      return 0;
  59:  }

你可能感兴趣的:(Maximum subarray problem--Kadane’s Algorithm)