http://www.lintcode.com/en/problem/longest-increasing-subsequence/?rand=true
public class Solution {
/**
* @param nums: The integer array
* @return: The length of LIS (longest increasing subsequence)
*/
public int longestIncreasingSubsequence(int[] nums) {
// write your code here
if (nums.length == 0) {
return 0;
}
int max = 0;
int[] dp = new int[nums.length];
// 存储最长的子数组长度
for (int i = 0; i < nums.length; i++) {
dp[i] = 1;
// 至少自己一个是可以的
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
// 说明可以在j位置上的最长子数组加1
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
max = Math.max(dp[i], max);
}
return max;
}
}