Given an array of integers A
, consider all non-empty subsequences of A
.
For any sequence S
, let the width of S
be the difference between the maximum and minimum element of S
.
Return the sum of the widths of all subsequences of A
.
As the answer may be very large, return the answer modulo 10^9 + 7
.
Example 1:
Input: [2,1,3]
Output: 6
Explanation:
Subsequences are [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3].
The corresponding widths are 0, 0, 0, 1, 1, 2, 2.
The sum of these widths is 6.
Note:
1 <= A.length <= 20000
1 <= A[i] <= 20000
先将原数组排序(排序并不会影响结果), 则,起始位置是 i
, 结束位置是 j
的串的宽度一定是 A[j]-A[i]
,中间可以有串,也可以没有串。代码如下:
for(int i = 0; i < A.size(); ++i)
{
for(int j = i+1; j < A.size(); ++j)
{
ans = (ans + (long long int)pow2[j-i-1]*(A[j]-A[i]))%1000000007;
}
}
class Solution {
public:
int sumSubseqWidths(vector<int>& A) {
sort(A.begin(), A.end());
long long int ans = 0;
long long int pow2[20001];
for(size_t i = 0; i <= A.size(); ++i)
{
if(i == 0) pow2[i] = 1;
else pow2[i] = pow2[i-1]*2%1000000007;
}
for(int i = 0; i < A.size(); ++i)
{
ans += (pow2[i]-1)*A[i]%1000000007;
ans = (ans - (pow2[A.size()-1-i]-1)*A[i])%1000000007;
}
return ans;
}
};