c++ 实现版本:
1 人脸检测 1.1 使用mtcnn-ncnn进行人脸检测,会输出face box和landmark5 face box: [x1,y1,x2,y2] landmark5: [left_eye,right_eye, nose, month_left, month_right] 2 图像变换(使用Egien矩阵库) 2.1 下载Egien 2.2 创建一个项目, 引用Egien, 2.3 使用SVD分解, 计算变换矩阵, 2.4 进行图像的仿射变换 ================================================= 代码如下: #pragma once #include#include"opencv_base.h" using namespace std; using namespace Eigen; /* 使用五点人脸对齐 left_eye, right_eye, nose, left_month, right_month */ static Mat face_align_bypoint5(Mat src_frame, vector landmark5, vector box) { MatrixXf src_landmark_mtx(5, 2); int i = 0; for (size_t r = 0; r < landmark5.size(); r++) { src_landmark_mtx(r, 0) = landmark5.at(r).x; src_landmark_mtx(r, 1) = landmark5.at(r).y; i++; } Matrix dst_landmark_mtx; dst_landmark_mtx << 30.2946, 51.6963, 65.5318, 51.6963, 48.0252, 71.7366, 33.5493, 92.3655, 62.7299, 92.3655; int rows = src_landmark_mtx.rows(); int cols = src_landmark_mtx.cols(); MatrixXf mean1 = src_landmark_mtx.colwise().mean(); // [1,2] MatrixXf mean2 = dst_landmark_mtx.colwise().mean(); // [1,2] float col_mean_1 = mean1(0, 0); // 列的均值 float col_mean_2 = mean2(0, 0); //cout << src_landmark_mtx << endl; //cout << dst_landmark_mtx << endl; // std = sqrt(mean(abs(x - x.mean())**2)) Matrix m1, m2; for (size_t r = 0; r < rows; r++) { for (size_t c = 0; c < cols; c++) { src_landmark_mtx(r, c) -= mean1(0, c); dst_landmark_mtx(r, c) -= mean2(0, c); auto abs_v1 = std::abs(src_landmark_mtx(r, c)); auto abs_v2 = std::abs(dst_landmark_mtx(r, c)); m1(r, c) = pow(abs_v1, 2); m2(r, c) = pow(abs_v2, 2); } } float std1 = sqrt(m1.mean()); float std2 = sqrt(m2.mean()); src_landmark_mtx /= std1; dst_landmark_mtx /= std2; //printf_s(" ============= std norm =============\n"); //cout << src_landmark_mtx << endl; //cout << dst_landmark_mtx << endl; MatrixXf m = src_landmark_mtx.transpose() * dst_landmark_mtx; // [2,2] JacobiSVD svd(m, ComputeThinU | ComputeThinV); MatrixXf VT = svd.matrixV().transpose(); MatrixXf U = svd.matrixU(); MatrixXf A = svd.singularValues(); MatrixXf R = (U*VT).transpose(); // [2,2] //printf_s(" ============= svd =============\n"); //cout << VT << endl; //cout << U << endl; //cout << A << endl; //cout << R << endl; MatrixXf M(3, 3); M.row(2) << 0., 0., 1.; MatrixXf t1 = (std1 / std2)*R; // [2,2] MatrixXf t2 = mean2.transpose() - (std1 / std2)*R*mean1.transpose(); // [2,1] M.row(0) << t1(0, 0), t1(0, 1), t2(0, 0); M.row(1) << t1(1, 0), t1(1, 1), t2(1, 0); //printf_s(" ============= transformer =============\n"); //cout << M << endl; //printf_s(" ============= face transformer =============\n"); Mat cv_transformMat = (Mat_ (2, 3) << \ M(0, 0), M(0, 1), M(0, 2), \ M(1, 0), M(1, 1), M(1, 2)); Mat align_img = Mat::zeros(src_frame.rows * 3, src_frame.cols * 3, src_frame.type()); src_frame.copyTo(align_img(Rect(100, 100, src_frame.cols, src_frame.rows))); for (size_t k = 0; k < box.size(); k++) { box.at(k).x += 100; box.at(k).y += 100; } //rectangle(align_img, // Rect(box[0].x, box[0].y, // box[3].x - box[0].x, // box[3].y - box[0].y), // Scalar(0, 255, 0), 1, 1); for (size_t k = 0; k < landmark5.size(); k++) { landmark5.at(k).x += 100; landmark5.at(k).y += 100; //circle(align_img, landmark5.at(k), 2, Scalar(0, 255, 0), 1); } //imshow("align", align_img); warpAffine(align_img, align_img, cv_transformMat, align_img.size()); //printf_s(" ============= point transformer =============\n"); Rect roi(0, 0, 0, 0); for (size_t r = 0; r < box.size(); r++) { auto x = box.at(r).x, y = box.at(r).y; box[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); box[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } for (size_t r = 0; r < landmark5.size(); r++) { auto x = landmark5.at(r).x, y = landmark5.at(r).y; landmark5[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); landmark5[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } // 由于box的点对齐后会出现 脸不全的情况,需要使用对齐后的关键点来矫正box auto dis_left_eye_right_eye = landmark5[1].x - landmark5[0].x; auto dis_left_month_left_eye = landmark5[landmark5.size() - 2].y - landmark5[0].y; box[0].x = min(box[0].x, landmark5[0].x - dis_left_eye_right_eye / 2); // left top X; box[0].y = min(box[0].y, landmark5[0].y - dis_left_month_left_eye / 1.1); // left top Y; box[box.size() - 1].x = max(box[box.size() - 1].x, landmark5[1].x + dis_left_eye_right_eye / 2); // right bottom X; box[box.size() - 1].y = max(box[box.size() - 1].y, landmark5[landmark5.size() - 1].y + dis_left_month_left_eye / 1.1); // right bottom y; roi.x = max(0, int(box[0].x)); roi.y = max(0, int(box[0].y)); roi.width = min(int(box.at(box.size() - 1).x - roi.x) + 10, align_img.cols - roi.x); roi.height = min(int(box.at(box.size() - 1).y - roi.y) + 10, align_img.rows - roi.y); Mat align_face = align_img(roi); //// draw //rectangle(align_img, roi, Scalar(0, 0, 255), 1, 1); //for (size_t k = 0; k < landmark5.size(); k++) //{ // circle(align_img, landmark5.at(k), 2, Scalar(0, 0, 255), 1); //} //resize(align_face, align_face, Size(300, 350)); //imshow("src", src_frame); //imshow("align2", align_img); //imshow("align3", align_face); //waitKey(0); return align_face; } static Mat face_align_bypoint72(Mat src_frame, vector landmark72, vector box) { int rows = landmark72.size(); int cols = 2; MatrixXf src_landmark_mtx(rows, 2); int i = 0; for (size_t r = 0; r < landmark72.size(); r++) { src_landmark_mtx(r, 0) = landmark72.at(r).x; src_landmark_mtx(r, 1) = landmark72.at(r).y; i++; } MatrixXf dst_landmark_mtx(rows, 2); dst_landmark_mtx << 32.00, 210.00, 42.00, 281.00, 54.00, 353.00, 73.00, 424.00, 118.00, 497.00, 189.00, 558.00, 265.00, 579.00, 335.00, 553.00, 400.00, 494.00, 444.00, 425.00, 465.00, 353.00, 477.00, 282.00, 484.00, 211.00, 107.00, 256.00, 132.00, 241.00, 158.00, 238.00, 185.00, 245.00, 205.00, 267.00, 181.00, 274.00, 154.00, 275.00, 128.00, 268.00, 160.00, 254.00, 73.000, 212.00, 107.00, 190.00, 148.00, 194.00, 182.00, 207.00, 214.00, 231.00, 179.00, 226.00, 143.00, 219.00, 107.00, 213.00, 312.00, 266.00, 334.00, 243.00, 361.00, 235.00, 387.00, 239.00, 412.00, 254.00, 392.00, 268.00, 364.00, 275.00, 336.00, 273.00, 361.00, 253.00, 298.00, 230.00, 334.00, 207.00, 369.00, 196.00, 411.00, 192.00, 447.00, 213.00, 412.00, 215.00, 374.00, 221.00, 337.00, 228.00, 229.00, 270.00, 224.00, 314.00, 220.00, 357.00, 204.00, 402.00, 225.00, 409.00, 295.00, 410.00, 320.00, 404.00, 303.00, 359.00, 296.00, 315.00, 287.00, 270.00, 260.00, 392.00, 188.00, 465.00, 227.00, 464.00, 264.00, 467.00, 302.00, 461.00, 340.00, 466.00, 305.00, 487.00, 264.00, 492.00, 223.00, 485.00, 226.00, 475.00, 263.00, 481.00, 302.00, 476.00, 300.00, 467.00, 263.00, 467.00, 229.00, 465.00; MatrixXf mean1 = src_landmark_mtx.colwise().mean(); // [1,2] MatrixXf mean2 = dst_landmark_mtx.colwise().mean(); // [1,2] float col_mean_1 = mean1(0, 0); // 列的均值 float col_mean_2 = mean2(0, 0); cout << src_landmark_mtx << endl; cout << dst_landmark_mtx << endl; // std = sqrt(mean(abs(x - x.mean())**2)) MatrixXf m1(rows, 2), m2(rows, 2); for (size_t r = 0; r < rows; r++) { for (size_t c = 0; c < cols; c++) { src_landmark_mtx(r, c) -= mean1(0, c); dst_landmark_mtx(r, c) -= mean2(0, c); auto abs_v1 = std::abs(src_landmark_mtx(r, c)); auto abs_v2 = std::abs(dst_landmark_mtx(r, c)); m1(r, c) = pow(abs_v1, 2); m2(r, c) = pow(abs_v2, 2); } } float std1 = sqrt(m1.mean()); float std2 = sqrt(m2.mean()); src_landmark_mtx /= std1; dst_landmark_mtx /= std2; printf_s(" ============= std norm =============\n"); cout << src_landmark_mtx << endl; cout << dst_landmark_mtx << endl; MatrixXf m = src_landmark_mtx.transpose() * dst_landmark_mtx; // [2,2] JacobiSVD svd(m, ComputeThinU | ComputeThinV); MatrixXf VT = svd.matrixV().transpose(); MatrixXf U = svd.matrixU(); MatrixXf A = svd.singularValues(); MatrixXf R = (U*VT).transpose(); // [2,2] printf_s(" ============= svd =============\n"); cout << VT << endl; cout << U << endl; cout << A << endl; cout << R << endl; MatrixXf M(3, 3); M.row(2) << 0., 0., 1.; MatrixXf t1 = (std1 / std2)*R; // [2,2] MatrixXf t2 = mean2.transpose() - (std1 / std2)*R*mean1.transpose(); // [2,1] M.row(0) << t1(0, 0), t1(0, 1), t2(0, 0); M.row(1) << t1(1, 0), t1(1, 1), t2(1, 0); printf_s(" ============= transformer =============\n"); cout << M << endl; printf_s(" ============= face transformer =============\n"); Mat cv_transformMat = (Mat_ (2, 3) << \ M(0, 0), M(0, 1), M(0, 2), \ M(1, 0), M(1, 1), M(1, 2)); Mat align_img = Mat::zeros(src_frame.rows * 3, src_frame.cols * 3, CV_8UC3); src_frame.copyTo(align_img(Rect(100, 100, src_frame.cols, src_frame.rows))); for (size_t k = 0; k < box.size(); k++) { box.at(k).x += 100; box.at(k).y += 100; } //rectangle(align_img, Rect(box[0].x, box[0].y, box[3].x - box[0].x, box[3].y - box[0].y), // Scalar(0, 255, 0), 1, 1); for (size_t k = 0; k < landmark72.size(); k++) { landmark72.at(k).x += 100; landmark72.at(k).y += 100; //circle(align_img, landmark72.at(k), 2, Scalar(0, 255, 0), 1); } //imshow("align", align_img); warpAffine(align_img, align_img, cv_transformMat, align_img.size()); printf_s(" ============= point transformer =============\n"); Rect roi(0, 0, 0, 0); for (size_t r = 0; r < box.size(); r++) { auto x = box.at(r).x, y = box.at(r).y; box[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); box[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } for (size_t r = 0; r < landmark72.size(); r++) { auto x = landmark72.at(r).x, y = landmark72.at(r).y; landmark72[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); landmark72[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } // 由于box的点对齐后会出现 脸不全的情况,需要使用对齐后的关键点来矫正box //auto dis_left_eye_right_eye = landmark72[38].x - landmark72[21].x; //auto dis_left_month_left_eye = landmark72[58].y - landmark72[21].y; //box[0].x = min(box[0].x, landmark72[21].x - dis_left_eye_right_eye / 2); // left top X; //box[0].y = min(box[0].y, landmark72[21].y - dis_left_month_left_eye / 1.1); // left top Y; //box[box.size() - 1].x = max(box[box.size() - 1].x, landmark72[38].x + dis_left_eye_right_eye / 2); // right bottom X; //box[box.size() - 1].y = max(box[box.size() - 1].y, landmark72[58].y + dis_left_month_left_eye / 1.1); // right bottom y; //roi.x = max(0, int(box[0].x)); //roi.y = max(0, int(box[0].y)); //roi.width = min(int(box.at(box.size() - 1).x - roi.x) + 10, align_img.cols - roi.x); //roi.height = min(int(box.at(box.size() - 1).y - roi.y) + 10, align_img.rows - roi.y); // 使用脸部外围的极值点来矫正 double min_x = landmark72[0].x, min_y = landmark72[41].y; double max_x = landmark72[12].x, max_y = landmark72[6].y; box[0].x = min(box[0].x, min_x); box[0].y = min(box[0].y, min_y); roi.x = max(0, int(box[0].x)); roi.y = max(0, int(box[0].y)); roi.width = min(int(max_x - roi.x) + 5, align_img.cols - roi.x); roi.height = min(int(max_y - roi.y) + 5, align_img.rows - roi.y); if (roi.width <= 0 || roi.height <= 0) { return align_img; } Mat align_face = align_img(roi); //// draw box & keypoints //rectangle(align_img, roi, Scalar(0, 0, 255), 1, 1); //for (size_t k = 0; k < landmark72.size(); k++) //{ // circle(align_img, landmark72.at(k), 2, Scalar(0, 0, 255), 1); //} //resize(align_face, align_face, Size(300, 350)); //imshow("src", src_frame); //imshow("align2", align_img); //imshow("align3", align_face); //waitKey(0); return align_face; } ================================================= 3 输出 3.1 输出的图像就是垂直的人脸图像
Python 实现过程:
1 人脸检测 1.1 使用mtcnn-tensorflow进行人脸检测,会输出face box和landmark5 face box: [x1,y1,x2,y2] landmark5: [left_eye,right_eye, nose, month_left, month_right] 2 图像变换(使用numpy矩阵库) 2.1 使用SVD分解, 计算变换矩阵, 2.2 进行图像的仿射变换 ========================================== # 计算旋转矩阵 def transformation_from_points(points1, points2): points1 = points1.astype(np.float64) points2 = points2.astype(np.float64) c1 = np.mean(points1, axis=0) c2 = np.mean(points2, axis=0) points1 -= c1 points2 -= c2 s1 = np.std(points1) s2 = np.std(points2) points1 /= s1 points2 /= s2 U, S, Vt = np.linalg.svd(points1.T * points2) R = (U * Vt).T M = np.vstack([ np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), np.asmatrix([0., 0., 1.])]) return M # 关键点对齐 def landmark_alignment(src_landmark, M): M_matrix = np.asmatrix(M) assert M_matrix.shape == (3, 3) rows, cols = src_landmark.shape src_landmark2 = src_landmark.copy() for i in range(rows): x, y = src_landmark[i, 0], src_landmark[i, 1] x1 = x * M_matrix[0, 0] + y * M_matrix[0, 1] + M_matrix[0, 2] y1 = x * M_matrix[1, 0] + y * M_matrix[1, 1] + M_matrix[1, 2] src_landmark2[i] = [x1, y1] src_landmark2 = src_landmark2.astype(np.int) return src_landmark2 # 人脸对齐 def face_alignment(src_landmark5, image_numpy): h, w, c = image_numpy.shape # 5点对齐后的基准点 dst_landmark5 = np.asmatrix([[30.2946, 51.6963], # left eye [65.5318, 51.6963], # right eye [48.0252, 71.7366], # nose [33.5493, 92.3655], # left month [62.7299, 92.3655]]) # right month # 68点对齐后的基准点 dst_landmark68 = np.asmatrix([[282, 156], [278, 176], [277, 198], [276, 219], [279, 241], [287, 262], [299, 280], [315, 293], [333, 300], [352, 300], [372, 293], [391, 282], [406, 270], [418, 253], [426, 236], [434, 217], [439, 197], [301, 138], [313, 128], [328, 127], [343, 130], [356, 138], [384, 144], [400, 142], [417, 145], [431, 156], [437, 171], [365, 160], [362, 174], [359, 188], [357, 202], [337, 211], [344, 215], [352, 219], [360, 219], [368, 218], [312, 152], [322, 147], [332, 149], [340, 159], [330, 159], [320, 157], [385, 169], [396, 164], [407, 167], [414, 176], [405, 177], [394, 174], [317, 242], [329, 237], [341, 235], [347, 238], [356, 237], [364, 243], [371, 253], [361, 258], [351, 259], [343, 259], [335, 257], [326, 251], [322, 242], [339, 243], [346, 245], [354, 245], [366, 251], [353, 247], [345, 247], [338, 245]]) # 计算旋转矩阵 M = transformation_from_points(src_landmark5, dst_landmark5) # 旋转图像 align_image = cv2.warpAffine(image_numpy, M[:2], (w, h)) # M = cv2.getPerspectiveTransform(np.asarray(src_landmark5, np.float32), # np.asarray(dst_landmark5, np.float32)) # align_image = cv2.warpPerspective(image_numpy, M, (w, h)) return align_image, M ========================================== 3 输出 3.1 输出的图像就是垂直的人脸图像