- python编写直方图和饼图
2301_80421078
python开发语言
1.直方图#直方图的绘制#语法格式:plt.hist(x,bins),其中x:数据集;bins:统计数据的分布区间importmatplotlib.pyplotaspltimportpandasaspd#导入文件excel=pd.read_excel('成绩.xlsx')#print(excel)#避免乱码plt.rcParams['font.sans-serif']=['SimHei']x=ex
- python绘制等高线和等值面初步
bcbobo21cn
图形学和3Dpython开发语言MatplotlibNumPy等高线
importmatplotlib.pyplotaspltimportnumpyasnpx=np.linspace(-5,6,210)y=np.linspace(-5,6,210)x,y=np.meshgrid(x,y)z=(1-x/2+x**5+y**4)*np.exp(-x**2-y**2)plt.contour(x,y,z,levels=9,colors='black')plt.show()i
- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- 2024年Python最全Python-Matplotlib可视化(1)——一文详解常见统计图的绘制(1)
2401_84558452
程序员pythonmatplotlib开发语言
importmatplotlib.pyplotaspltx=range(50)y=[value*2forvalueinx]plt.plot(x,y)plt.show()上述代码将会绘制曲线y=2*x,其中x在[0,50]范围内,如下所示:可以看到窗口上方还包含多个图标,其中:|项目|Value||—|—|||此按钮用于将所绘制的图形另存为所需格式的图片,包括png,jpg,pdf,svg等常见格式
- Python的三种方式显示图片
西柚与蓝莓
pythonpython
fromPILimportImageimportnumpyasnpim=Image.open("img.png")#方法一:使用PIL库显示图片a=np.array(im)im=Image.fromarray(a)im.show()importmatplotlib.pyplotasplt#方法二:使用matplotlib库显示图片plt.imshow(a)plt.show()#方法三:使用open
- python可视化
weixin_40757994
Python学习可视化
matplotlib库散点图importmatplotlib.pyplotasplt%matplotlibinlinex=[1,2,3,4,5,6,7,8,9,10]y=[2,4,6,8,10,12,14,16,18,20]plt.scatter(x,y)plt.xlabel('xvalues')plt.ylabel('yvalues')plt.title('XvaluesversusYvalue
- 4、柱状图
凌晨思索
7、标题正负柱状图importnumpyasnpimportmatplotlib.pyplotasplta=np.array([5,20,15,25,10])b=np.array([10,15,20,15,5])plt.bar(range(len(a)),a)#正柱状图plt.bar(range(len(b)),-b)#负柱状图plt.title('正负柱状图')#title标题plt.show(
- 图像处理 -- 图像清晰度测量方法
sz66cm
图像处理计算机视觉
图像清晰度测量方法拉普拉斯算子(LaplacianOperator)拉普拉斯算子是一种二阶导数算子,用于检测图像的边缘。清晰的图像通常具有更多且更明显的边缘。边缘检测(EdgeDetection)常用的边缘检测算法包括Sobel、Prewitt和Canny边缘检测器。通过计算边缘的数量和强度,可以间接判断图像的清晰度。方差(Variance)方差用于衡量图像灰度值的分布情况。图像中灰度值的方差越大
- matplotlib和seaborn绘图
Oliveee
https://www.jianshu.com/p/7a0eafdd1340《利用Python进行数据分析·第2版》第9章绘图和可视化matplotlib引入%matplotlibnotebookimportmatplotlib.pyplotasplt简单示例fig=plt.figure()ax1=fig.add_subplot(2,2,1)ax2=fig.add_subplot(2,2,2)ax
- Matplotlib学习(一)快速上手
小翟Sam
一、安装使用pip3安装pip3installmatplotlib二、编写测试程序importmatplotlib.pyplotasplt%matplotlibinline#兼容性写法,有些系统不需要也可执行plt.figure()#创建画布plt.plot([2,0,4],[1,1,9],[4,5,6],[1,3,2])#画图plt.show()效果:代码执行效果图matplotlib结构图:M
- plt曲线论文格式
小蜗笔记
pythonmatlibplot机器学习python概率论
importmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdplt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签plt.rcParams['axes.unicode_minus']=False#用来正常显示负号data=pd.read_excel('xlsx')x=data['次数']y
- python绘制二维正态分布概率密度图(2d,3d)
马鹿91
pythonnumpy
importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportmultivariate_normal#定义均值和协方差矩阵mean=np.array([0,0])covariance=np.array([[1,0.5],[0.5,1]])#创建一个网格x,y=np.meshgrid(np.linspace(-3,3,500),np.
- Python绘制表格数据线性对比图
crazy121121
python数据分析
本文介绍了如何使用Python代码生成算法训练结果的线性结果对比图,适用于论文中展示实验效果。importmatplotlib.pyplotaspltimportpandasaspd#配置matplotlib以显示中文字符并处理负号plt.rcParams['font.sans-serif']=['SimSun']#使用宋体字体plt.rcParams['axes.unicode_minus']=
- VIT论文阅读: A Image is Worth 16x16 Words
Undefined游侠
论文阅读
简介在2024年,大家都知道了transformer的故事,但是在4年前,CNN和Transformer谁才是CV的未来,还没有那么确定。在简介部分,作者提到了一个令人失望的事实,在基于imagenet的实验中发现,transformer的表现差于同尺寸的ResNet。作者把原因归结到biastranslationequivarianceandlocality,这些CNN具有,但是transfor
- 《菜菜的机器学习sklearn课堂》随机森林应用泛化误差调参实例
2401_83977689
程序员机器学习sklearn随机森林
clf=DecisionTreeClassifier()clf_s=cross_val_score(clf,wine.data,wine.target,cv=10)plt.plot(range(1,11),rfc_s,label=“RandomForest”)plt.plot(range(1,11),clf_s,label=“DecisionTree”)plt.legend()plt.show()
- jupyter notebook 绘图中文显示乱码解决办法及绘图大小
爱吹口哨的夜莺
杂七杂八BUG
importmatplotlib.pyplotaspltplt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus']=False插入上面代码即可参考博客:https://blog.csdn.net/silence2015/article/details/79097440?绘制图形大小:plt.rcParam
- numpy和matplotlib小例子
Roy Teng
numpymatplotlib
最近准备学《Python数据分析与挖掘实战》这本书,刚看到第二章numpy和matplotlib这一部分,发现这个图挺有意思的,就做个笔记记录一下,日后发现有意思的继续更。importnumpyasnpimportmatplotlib.pyplotaspltx=np.linspace(0,10,1000)y=np.sin(x)+1z=np.cos(x**2)+1plt.figure(figsize
- Matplotlib plt.plot数据可视化应用案例
数字化信息化智能化解决方案
信息可视化matplotlib
Matplotlib是Python中一个非常流行的绘图库,它允许用户创建各种静态、动态、交互式的图表和可视化。plt.plot()是Matplotlib中用于绘制二维数据的基本函数。下面是一个使用plt.plot()的简单数据可视化应用案例:案例:绘制正弦和余弦曲线准备数据:首先,我们需要准备一些数据点来绘制正弦和余弦曲线。绘制图形:使用plt.plot()绘制正弦和余弦曲线。添加标题和标签:为了
- 评估与改进机器学习模型
stoAir
吴恩达深度学习笔记机器学习人工智能神经网络深度学习
Mlstrategy文章目录MlstrategySingleNumbleEvaluationMetricoptimizingandsatisficingmetricImprovingmodelperformanceTwofundamentalReducebiasandvarianceAvoidablebiasvarianceerroranalysiswaysIncorrectlylabledexa
- 【plt.hist绘制直方图】:从入门到精通,只需一篇文章!【Matplotlib可视化】
高斯小哥
matplotlib信息可视化pythonpycharmnumpypandas
【plt.pie绘制直方图】:从入门到精通,只需一篇文章!【Matplotlib可视化】!利用Matplotlib进行数据可视化示例文章目录一、引言二、plt.hist()函数基础三、plt.hist()进阶技巧1.自定义直方图外观2.多组数据在同一张直方图上展示四、参考文档|相关链接五、结尾一、引言 数据可视化是数据分析和机器学习领域不可或缺的一部分。其中,直方图作为一种简单而直观的数据展示方
- 机器学习实战1-基础运用(2022/10/11)
点灯的棉羊
机器学习Jupyter笔记机器学习pythonnumpy
机器学习实战1-基础运用文章目录机器学习实战1-基础运用numpy的简单运用生成矩阵和矩阵的简单操作用pandas库读取、保存csv数据文件read_csv()函数及读入的数据处理to_csv()保存数据matplotlib.pyplot库绘图的使用条形图的绘制箱型图的绘制分位数(Quantile)分位点/四分位数分位数与箱型图`boxplot()`函数绘制交叉报表热力图plt绘图基础import
- 11种 Matplotlib 科研论文图表实现 !!
JOYCE_Leo16
Pythonmatplotlib深度学习python
文章目录前言1、折线图(1)调整折线图:线条颜色和风格(2)调整折线图:坐标轴范围(3)折线图标签(4)额外内容:Matplotlib的坑2、散点图(1)使用plt.plot绘制散点图(2)使用plt.scatter绘制散点图(3)plot和scatter对比:性能提醒3、误差可视化连续误差4、密度和轮廓图三维可视化函数5、直方图、分桶和密度二维直方图和分桶6、自定义图标图例(1)选择设置图例的元
- 文献解读:纵向数据的测量不变性和交叉滞后模型(一)
Codewar
今天本来想看看交叉滞后怎么做,然后给粉丝写写教程,查资料的过程中发现了一篇很好的文献,记录下来分享给大家。这篇文献主要是讲如何用R的lavaan包做交叉滞后模型的。文献一开始首先介绍MeasurementinvarianceMeasurementinvariance测量不变性在心理学的很多情形下,我们都不能直接测量我们想要的构象,比如饮酒动机,这些不能直接测量的变量叫做潜变量,叫做因子,叫做构象,
- pearson correlation coefficient
dingtom
要理解Pearson相关系数,首先要理解协方差(Covariance),协方差是一个反映两个随机变量相关程度的指标,如果一个变量跟随着另一个变量同时变大或者变小,那么这两个变量的协方差就是正值,反之相反,公式如下:Pearson相关系数公式如下:由公式可知,Pearson相关系数是用协方差除以两个变量的标准差得到的,虽然协方差能反映两个随机变量的相关程度(协方差大于0的时候表示两者正相关,小于0的
- 使用Keras和tensorfow,CNN手写数字识别
smallcui
查看数据fromtensorflow.keras.datasetsimportmnistimportmatplotlib.pyplotasplt(train_x,train_y),(test_x,test_Y)=mnist.load_data()plt.figure(figsize=(10,10))foriinrange(25):plt.subplot(5,5,i+1)plt.xticks([])
- Contravariance 概念在计算机编程中的应用
编辑器计算机
Contravariance是一种编程概念,常见于面向对象编程语言中,特别是在类型系统中。它涉及到类型的关系和继承。在理解Contravariance之前,我们先来了解一下Covariance和Invariance这两个概念,它们通常与Contravariance一起讨论。Covariance:当一个类的子类型(或者接口的子类型)在方法中替代父类型时,方法的返回类型会随之变化。换句话说,返回类型是
- 2019-12-01
xias147
利用python实现多元线性回归#-------机器学习--------1、简单一元线性回归importnumpyasnpimportmatplotlib.pyplotaspltx=np.array([1.,2.,3.,4.,5.])y=np.array([1.,3.,2.,3.,5,])plt.scatter(x,y)plt.axis([0,6,0,6])plt.show()x_mean=np.
- 14.2 OpenGL图元装配和光栅化:不变性
乘风之羽
OpenGL图形渲染
不变性Invariance一个几何体或图元(primitive)如三角形、线段等,在窗口坐标系下通过平移(x,y)偏移量得到的新图元p₀,如果原始图元p和变换后的图元p₀都没有被裁剪(clipping),那么由p₀生成的每一个片段f₀与原图元p生成的对应片段f除了中心点位置不同之外,在其它所有方面都应该是相同的。这种不变性是基于图形变换的基本性质,即平移不改变形状和大小,只改变位置。因此,即使是在
- 李宏毅机器学习——回归实验
migugu
importnumpyasnpimportmatplotlib.pyplotaspltfrompylabimportmpl#matplotlib没有中文字体,动态解决plt.rcParams['font.sans-serif']=['Simhei']#显示中文mpl.rcParams['axes.unicode_minus']=False#解决保存图像是负号'-'显示为方块的问题x_data=[3
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite