- 构建下一代云原生大模型多租户平台:架构设计与关键挑战
慌ZHANG
人工智能云原生后端云原生人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:从单用户部署到多租户平台的转型趋势随着开源大语言模型(LLM)能力日益强大,企业部署与应用大模型已从“验证可行性”的早期阶段,逐步迈向“规模化服务”的中后期阶段。在这一背景下,“多租户”成为企业级AI平台建设的核心议题之一:SaaS平台希望一个模型服务多个客户;大企业希望多个部门共享模型资源但相互隔离;教育、医疗等敏感行业需要更精细的数据与
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 2025年AI十大趋势:从多模态大模型到自主智能体
zhuzhi
人工智能大数据
2025年AI十大趋势:从多模态大模型到自主智能体人工智能技术正以前所未有的速度重塑着我们的世界。2025年,AI领域将迎来一系列突破性进展,从多模态大模型的全面进化到自主智能体的广泛应用,这些技术变革正在重新定义人机交互的边界。本文将系统梳理2025年AI发展的十大核心趋势,为读者揭示人工智能技术的最新发展方向及其对社会各领域的深远影响。趋势一:多模态大模型成为基础设施2025年,多模态大模型已
- Spring Boot + ONNX Runtime模型部署
文章目录前言一、模型导出二、Java推理引擎选型三、SpringBoot实战3.1核心架构3.2分层架构详细实现1.Controller层-请求入口2.Service层-核心业务流程3.关键组件深度优化四、云原生部署:Docker+Kubernetes总结前言在AI浪潮席卷全球的今天,Java工程师如何守住后端主战场?模型部署正是Java工程师融入AI领域的方向。为什么Java工程师必须掌握模型部
- 使用【重心坐标】在模型上进行插值来获取纹理上每个像素对应的顶点坐标
雨中飞蛾
pythonblender
前提:纹理在模型上贴好后,能使用blenderpythonapi直接获取的就是,这个模型的每个三角面片上顶点对应的纹理坐标。这其中每个三角面的顶点构成一个三角形(A),每个三角面的顶点对应的纹理坐标也构成一个三角形(B)。(注:实际上blender常用的是四边形,所以处理时要把四边形分成两个三角形)计算步骤:1、遍历每个像素(P)时,先判断这个像素属于一群B三角形中的哪个三角形。2、然后结合这个像
- 本地部署ComfyUI,使用FLUX模型相关的配置以及软链接的使用
九河_
linuxComfyUIflux
记录本地部署ComfyUI时,使用FLUX模型相关的配置,包括FLUX模型的下载位置和使用软链接。参考资料:Flux.1ComfyUI对应模型安装及教程指南上面的网站还讲了非常多的ComfyUI以及其他模型,非常好的资料。FLUX.1dev下载网站:black-forest-labsflux1-dev.safetensors是UNET模型,需要放在ComfyUI/models/unet目录下如果从
- StackPanel和Grid
lph1972
c#
StackPanel只会在它的排列方向上填充内容,不会在另一方向上自动拉伸子元素,这就是它的核心行为。Grid是任意方向填充例所以常用stackpanel嵌套Grid横向stackpanel宽度自动延伸Width="{x:Staticsys:Double.NaN}"Height="500"填控件剩下需要再布局的部分嵌套GridHorizontalAlignment不是StackPanel本身的布局
- Substance Painter:PBR材质工作流程_2024-07-16_10-47-47.Tex
chenjj4003
游戏开发substancepainter材质贴图python开发语言性能优化maya
SubstancePainter:PBR材质工作流程SubstancePainter:PBR材质工作流程了解PBR材质PBR材质的基本概念PBR(PhysicallyBasedRendering)物理基渲染,是一种基于物理的渲染技术,它通过模拟真实世界中的光照和材质属性,来创建更加逼真的视觉效果。在PBR工作流程中,材质的定义不再依赖于特定的光照模型或渲染引擎,而是基于一组标准的物理属性,如金属度
- 33、探索云计算与安全:基础与挑战
探索云计算与安全:基础与挑战1.云计算简介云计算已经成为现代信息技术的重要组成部分,为企业和个人提供了灵活、高效、低成本的计算资源和服务。本文将深入探讨云计算的基本概念、发展历程、服务模型、部署模型以及面临的主要挑战。1.1云计算的历史与发展云计算的发展可以追溯到多个阶段,包括主机计算、集群计算、网格计算、分布式和并行计算、虚拟化、Web2.0、面向服务的计算(SOC)和实用计算。每个阶段都为云计
- 在浏览器中使用TensorFlow.js
魏铁锤chui
tensorflowjavascript人工智能
TensorFlow.js简介介绍光学字符识别(OCR)是指能够从图像或文档中捕获文本元素,并将其转换为机器可读的文本格式的技术。如果您想了解更多关于这个主题的内容,本文是一个很好的介绍。TensorFlow.js是一个库,用于使用JavaScript开发和训练机器学习模型,并将其部署在浏览器中或Node.js上。您可以使用现有模型、转换PythonTensorFlow模型、使用迁移学习用您自己的
- JVM垃圾回收调优知识点整理
图灵农场
个人笔记jvm
目录1、JVM内存模型1.2、堆及垃圾回收1.3、JVM参数设置经验:1.4、对象逃逸分析:2、类加载2.1、类加载过程:2.2、类加载器分类:2.3、类加载机制:2.4、打破双亲委派机制:3、JVM内存分配机制4、如何判断对象可以被回收4.1、引用计数法4.2、可达性分析算法4.3、常见引用类型4.4、finalize()方法最终判定对象是否存活4.5、如何判断一个类是无用的类5、垃圾收集算法5
- 【大模型面试必备】130道大模型问题深度解析,附详细答案,非常详细收藏这一篇就够了!
大模型学习
大模型架构数据库langchain人工智能面试
Attention1、讲讲对Attention的理解?Attention机制是一种在处理时序相关问题的时候常用的技术,*主要用于处理序列数据。*核心思想:在处理序列数据时,网络应该更关注输入中的重要部分,而忽略不重要的部分,它通过学习不同部分的权重,将输入的序列中的重要部分显式地加权,从而使得模型可以更好地关注与输出有关的信息。在序列建模任务中,比如机器翻译、文本摘要、语言理解等,输入序列的不同部
- pytorch底层原理学习--PyTorch 架构梳理
xinxiangwangzhi_
深度学习pytorch架构人工智能
文章目录PyTorch完整架构流程图关键组件详解完整执行流程示例PyTorch架构梳理PyTorch完整架构流程图硬件层后端层C++部署层核心引擎(libtorchC++)绑定层Python层加载调用训练模式编译模式推理模式生成CPUGPUCPUKernelsCUDAKernelsC++代码torch::jit::load('model.pt')module.forward(inputs)libt
- Certificate-based web services message security之感性认识
weixin_33755554
ux5gui
下面的.netconsoleapplication,添加System.ServiceModel.dll程序集引用即可,不需要配置文件。/*===SETCERT===makecert.exe-asha1-nCN=MyService.com-srLocalMachine-ssMy-skyexchange-skMyServicecertmgr.exe-add-c-nMyService.com-s-rlo
- python+unity实现数字人跟随运动
雨轩智能
python智能算法pythonUnity数字人
效果如下设计思路1python通过摄像头提取人物肢体关键点信息2通过UDP将获取到人体信息发送给Unity3unity将获取的的人物信息进行解析4将解析的数据赋值给模型骨架代码获取
- 网络编程(17)——asio多线程模型IOThreadPool
爱吃土豆zzz
网络编程单例模式c++网络编程asio
十七、day17之前我们介绍了IOServicePool的方式,一个IOServicePool开启n个线程和n个iocontext,每个线程内独立运行iocontext,各个iocontext监听各自绑定的socket是否就绪,如果就绪就在各自线程里触发回调函数。为避免线程安全问题,我们将网络数据封装为逻辑包投递给逻辑系统,逻辑系统有一个单独线程处理,这样将网络IO和逻辑处理解耦合,极大的提高了服
- Unity Face Capture面部捕捉方案教程——利用官方教程绑定人物模型
风带我去何处
unity游戏引擎
一.准备工作找到我们要绑定的人物(注意这个人物必须要有脸部表情的蒙皮和骨骼)二.导入模型打开上一篇文章中我们新创建的场景把我们要绑定的人物模型导入到FaceCaptureSample官方案例场景中导入模型折后在库中选中人物模型在右侧出现的属性栏中将读写打开(如果没有这一步你可以省略)将人物模型改为人形将人物模型导入到场景中(导入模型可能会遇到一些问题我们在这里不讨论请另行查阅)这个是导入完成后的场
- Java线程揭秘:守护线程与用户线程的深入解析及实战
橘子-青衫
后端开发java开发语言后端算法性能优化
目录前言一、守护线程与用户线程的定义、设置及其关键差异1.定义与设置2.守护线程与用户线程的区别二、实战案例解析1.代码案例:守护线程的设置与运行2.代码案例:用户线程与守护线程的交互三、如何识别守护线程总结前言在Java编程的并发与多线程领域,深入理解线程的类型是构建高效、可靠应用程序的重要基石。Java的多线程模型因其灵活性和广泛的应用场景,在高性能服务器开发、并发处理系统以及复杂业务逻辑实现
- 30、法律案例的关联检索:提升法律实践的信息处理能力
android
法律案例关联检索信息处理
法律案例的关联检索:提升法律实践的信息处理能力1.引言在当今信息爆炸的时代,法律从业者面临着前所未有的挑战。大量的法律案例、法规和判例使得信息检索变得复杂而耗时。为了提高工作效率和决策质量,法律从业者迫切需要一种高效的工具来发现和检索相互关联的法律案例。本文将探讨如何通过先进的信息检索技术和算法来实现这一点。2.关联模型关联模型是法律案例关联检索的核心。为了确定案例之间的关联性,通常采用以下几种模
- 软件工程中Selenium的关键字驱动测试
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构软件工程selenium测试工具ai
软件工程中Selenium的关键字驱动测试关键词:Selenium、关键字驱动测试、自动化测试、测试框架、Web测试、测试脚本、测试维护摘要:本文深入探讨了在软件工程中使用Selenium实现关键字驱动测试的方法论和实践。文章从基本概念入手,详细解析了关键字驱动测试的核心原理和架构设计,通过Python代码示例展示了具体实现方式,并提供了数学模型分析测试覆盖率。此外,文章还包含了实际项目案例、工具
- 由浅入深:Python异步函数调用的艺术 - 从脚本到API架构设计
Ven%
pythonpython网络开发语言
文章目录引言:异步编程的新范式一、基础篇:事件循环中的直接调用1.1理解异步执行模型1.2简单调用示例1.3关键注意事项二、进阶篇:API接口中的异步调用2.1为什么需要API封装?2.2FastAPI实现示例2.3调用对比分析三、架构篇:分层设计的最佳实践3.1问题:紧耦合的陷阱3.2解决方案:三层架构设计3.2.1核心业务层(core/retrieval.py)3.2.2API接口层(api/
- 【数据标注师】语音校对标注
试着
数据标注师语音识别人工智能数据标注师语音校对标注
目录一、语音校对标注的核心使命**任务本质****四大核心价值**二、专业工作环境配置**硬件黄金组合****软件栈深度掌握**三、九大错误类型识别与修正**语音校对错误矩阵**四、专业校对工作流**五步双轨校对法****复杂场景攻坚策略五、质量与效率的平衡术**质检三维度****效率提升方案**六、领域专业化路径**医疗语音校对专精****法律语音校对专精**七、职业进阶方向**能力跃迁模型**
- 云原生函数计算:冷启动优化全攻略
AI云原生与云计算技术学院
云原生ai
云原生函数计算:冷启动优化全攻略关键词:云原生,函数计算,Serverless,冷启动,性能优化,资源调度,运行时优化摘要:本文深入解析云原生函数计算场景下的冷启动问题,系统阐述冷启动的技术原理、核心影响因素及全链路优化策略。通过对函数计算架构的深度拆解,结合具体代码实现和数学模型分析,提供从基础设施层到应用层的端到端优化方案。涵盖轻量级运行时设计、依赖管理优化、资源预分配策略等关键技术点,并通过
- 如何在pytorch中使用tqdm:优雅实现训练进度监控
Ven%
简单入门pytorchpytorch人工智能python
文章目录为什么需要进度条?tqdm简介基础用法示例深度学习中的实战应用1.数据加载进度监控2.训练循环增强版3.验证阶段集成高级技巧与最佳实践1.自定义进度条样式2.嵌套进度条(多任务)3.分布式训练支持4.与日志系统集成性能优化建议完整训练流程示例常见问题解决方案总结掌握训练进度监控是深度学习工程师的基本功。本文将带你从零开始,深入探索如何用tqdm为深度学习训练添加专业级进度条。为什么需要进度
- 9.5 6B参数吊打百亿?清华开源VisualGLM-6B多模态模型实战全解
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力开源机器学习人工智能语言模型langchain
6B参数吊打百亿?清华开源VisualGLM-6B多模态模型实战全解初探多模态VisualGLM-6B1.多模态时代的挑战与突破在通用大模型向多模态演进的过程中,如何实现跨模态的语义对齐是核心挑战。VisualGLM-6B作为GLM家族首个开源多模态模型,通过创新的跨模态连接架构,在参数量仅6B级别下实现了媲美百亿级模型的图文理解能力。
- [2025CVPR]DE-GANs:一种高效的生成对抗网络
清风AI
深度学习算法详解及代码复现生成对抗网络人工智能神经网络
目录引言:数据高效GAN的困境核心原理:动态质量筛选机制1.判别器拒绝采样(DRS)的再思考2.质量感知动态拒绝公式(1)质量感知阶段(2)动态拒绝阶段模型架构:轻量化设计技术突破:三大创新点1.首创训练阶段DRS2.动态拒绝机制3.质量重加权策略实验验证:全面性能提升1.数据集与指标2.对比实验结果(1)低样本数据集(2)FFHQ数据集代码解析:关键实现细节对比结果:全面超越现有方法1.低样本数
- Dimba: Transformer-Mamba Diffusion Models————3 Methodology
图解图片中的每个模块详解1.文本输入(Text)描述:输入的文本描述了一个具有具体特征的场景。功能:提供关于要生成图像的详细信息。2.T5模型(TexttoFeature)描述:使用T5模型将文本转换为特征向量。功能:提取文本中的语义信息,为后续的图像生成提供条件。3.图像输入(Image)描述:输入图像通过变分自编码器(VAE)编码器处理。功能:将图像转换为潜在表示,用于添加噪声并进行扩散过程。
- Nacos与Eureka、ZooKeeper的区别?
leijmdas
java
Nacos、Eureka和ZooKeeper是分布式系统中常用的服务注册与发现组件,但它们在功能定位、一致性模型、性能特性及适用场景上存在显著差异。以下从核心维度进行对比分析:一、功能定位对比特性NacosEurekaZooKeeper核心功能服务注册发现+动态配置管理仅服务注册发现分布式协调(含服务发现)健康检查多模式(心跳+服务端主动探测)仅客户端心跳临时节点会话机制管理界面功能丰富,支持配置
- LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
不吃辣的陈
人工智能pythonlangchainfaiss自然语言处理
LlamaIndex+智谱大模型GLM实现智能代理(Agent)文章目录LlamaIndex+智谱大模型GLM实现智能代理(Agent)前言一、模型加载二、向量数据库加载1.向量库加载2.向量库生成三、方法创建1.创建FAISS查询引擎适配器(本地外挂知识库查询)2.数学计算工具函数(计算器)3.WebSearch工具(网络搜索)4.手机号码归属地信息(号码归属地工具)四、FunctionTool
- 计算机专业毕业设计选题指南(2025创新版)
程序员小天00
课程设计毕业设计小程序pythoneclipsejava
计算机专业毕业设计选题指南(2025创新版)一、选题方向全景图(按技术维度划分)智能服务系统开发技术架构:SpringBoot+Vue3+MySQL/MongoDB典型场景:●智慧校园:实验室预约系统、学术成果可视化平台●医疗健康:电子病历智能分析系统、慢性病管理助手●城市治理:垃圾分类智能识别系统、交通拥堵预测模型创新点:融合OCR识别/NLP技术,实现无感化服务跨平台应用开发技术选型:Unia
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found