- 基于大模型的地中海贫血全流程预测与治疗管理研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与目标1.3研究方法与数据来源二、地中海贫血概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征2.4临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于地中海贫血预测的优势四、术前风险预测与手术方案制定4.1术前风险因素分析4.2大模型预测模型构建与验证4.3根据预测制定个性化手术方案五、
- |cisco|ipv4地址-分类地址
验证分类ip地址的作用以及对路由器的功能进行初步了解构建简单的网络拓扑192.168.0.1---->192----->c类的ip地址---->前3个字节是网络号(192.168.0),后面1个字节(1)是用来表示主机的后面1个字节的取值范围是[0,255]192.168.0.0表示1个具体的c类网络最小标志主机的地址:192.168.0.1最大标志主机的地址:192.168.0.254192.1
- IP地址的分类及范围详解:A、B、C、D、E五类是如何划分的
倍云数据
ip代理ip代理
IP地址类型最初设计互联网络时,为了便于寻址以及层次化构造网络,每个IP地址包括两个标识码(ID),即网络ID和主机ID。同一个物理网络上的所有主机都使用同一个网络ID,网络上的一个主机(包括网络上工作站,服务器和路由器等)有一个主机ID与其对应。IP地址根据网络ID的不同分为5种类型,A类地址、B类地址、C类地址、D类地址和E类地址。A类IP地址一个A类IP地址由1字节的网络地址和3字节主机地址
- JVM垃圾回收器
俗尘某某
JVMjavajvmjvm调优
JVM的垃圾回收机制主要通过不同的垃圾收集器来实现,垃圾收集器的设计围绕着几个核心目标:吞吐量、延迟(停顿时间)、内存占用,并根据它们工作的内存区域(年轻代/老年代)和工作方式(串行/并行/并发)进行分类。以下是JVM中主要的垃圾收集器类型及其特点,通常从两个维度来理解:维度一:按工作区域(分代收集的核心思想)年轻代收集器:主要负责回收年轻代(YoungGeneration)中的对象。特点:年轻代
- 深度学习之分类手写数字的网络
newyork major
卷积神经网络CNN深度学习人工智能
面临的问题定义神经⽹络后,我们回到⼿写识别上来。我们可以把识别⼿写数字问题分成两个⼦问题:把包含许多数字的图像分成⼀系列单独的图像,每个包含单个数字;也就是把图像,分成6个单独的图像分类单独的数字我们将专注于编程解决第⼆个问题,分类单独的数字。这样是因为,⼀旦你有分类单独数字的有效⽅法,分割问题是不难解决的。⼀种⽅法是尝试不同的分割⽅式,⽤数字分类器对每⼀个切分⽚段打分;如果数字分类器对每⼀个⽚段
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- 【ISAQB大纲解读】软件密集型系统的三大分类
小马哥编程
系统架构架构
软件密集型系统的类型划分为信息系统、嵌入式系统和移动系统,主要基于其应用场景、功能定位、硬件依赖程度及软件设计逻辑的显著差异。以下从三类系统的核心特征、典型场景及分类逻辑展开分析:一、软件密集型系统的定义与分类逻辑软件密集型系统指软件在系统功能实现中起决定性作用的系统,其分类本质上反映了不同场景下软件与硬件、业务需求的耦合方式。三类系统的划分依据包括:应用领域:商业办公、设备控制、移动交互等不同场
- AI工作流平台对比分析
come11234
Ai人工智能
以下是和「扣子工作流」(KoFlow)类似的AI工作流平台对比分析,涵盖主流工具的核心特点、使用方式、优缺点及区别:一、主流工作流平台分类平台类型核心定位代表用户扣子(KoFlow)低代码AI流程中文场景优化,深度集成大模型中文开发者/企业LangChain代码框架开发者灵活构建AI链Python开发者/AI工程师LlamaIndex数据增强框架企业级RAG(检索增强生成)数据工程师/知识库应用M
- 图论算法的大家庭——c++中的图论算法
imlarry0616
深度优先算法图论
图论算法是处理图结构问题的核心工具,广泛应用于路径规划、社交网络分析、计算机网络等领域。以下从基础概念、经典算法及其代码实现展开详细介绍,涵盖DFS、BFS、最短路径、最小生成树等核心内容,并附C++代码示例及注释。一、图的基础概念图的定义:由顶点(Vertex)集合V和边(Edge)集合E组成,记作G=(V,E)。分类:无向图:边无方向(如社交网络中的朋友关系)。有向图:边有方向(如网页链接关系
- 基于springboot+mysql+jpa+html实现商品销售信息系统
五星资源
springbootmysqljava
基于springboot+mysql+jpa+html实现商品销售信息系统一、系统介绍1、系统主要功能:2.涉及技术框架:3.本项目所用环境:二、功能展示三、其它系统四、获取源码一、系统介绍1、系统主要功能:订单管理模块商品管理模块品牌管理模块分类管理模块客户管理模块供应商管理模块2.涉及技术框架:web框架:SpringBoot数据库框架:SpingDataJPA数据库:MySql项目构建工具:
- 脑机新手指南(二十)BCI2000 新手入门指南(下篇)
Brduino脑机接口技术答疑
脑机新手指南人工智能算法大数据
一、引言在上篇文章中,我们介绍了BCI2000的基本概念、特点和优势,以及安装、配置和基本使用流程。在本篇文章中,我们将深入探讨BCI2000的信号处理和分类算法,并提供一些实操的代码教程,帮助新手更好地掌握BCI2000的使用方法。二、BCI2000的信号处理(一)信号处理的基本概念在脑机接口系统中,信号处理是一个非常重要的环节,它的主要目的是从原始的脑电信号中提取有用的信息,并去除噪声和干扰。
- 磁盘是计算机存储设备的一种,用于持久存储和读取数据,通过磁性材料在盘片上制造磁道和磁点
Bol5261
engineering)Data(StructuresAlgorithms)App(ApplicationJavaKotlin)制造网络
以下是关于磁盘的详细介绍:磁盘的定义与作用磁盘是计算机存储设备的一种,用于持久存储和读取数据。它以圆盘状的物理结构为基础,通过磁性材料在盘片上制造磁道和磁点,利用磁头来读写数据。其主要功能是存储操作系统、应用程序、用户数据等,并在需要时提供数据的读取和写入。磁盘的分类按磁头是否可以移动分类移动磁头式磁盘(MovableHeadDisk):磁头可以移动,用于定位磁盘上不同的磁道,典型代表是机械硬盘(
- Java基础集合框架结构分类图形
骑牛小道士
javajvm开发语言
集合集合分类分类图Collection分类Collection集合子结构之List合集Collection集合子结构之Set合集Collection集合子结构之Queue合集Map分类集合就是一个放数据的容器,准确的说是放数据对象引用的容器集合分类分类图java中集合分类有两大根接口Collection和Map集合CollectionMapCollection分类Collection集合的架构粗略
- 贝叶斯网络与深度学习的结合:图像识别和分类
AI天才研究院
AI人工智能与大数据计算AI大模型企业级应用开发实战自然语言处理人工智能语言模型编程实践开发语言架构设计
本文我将为您撰写一篇关于"贝叶斯网络与深度学习的结合:图像识别和分类"的技术博客文章。这篇文章将深入探讨贝叶斯网络和深度学习在图像识别和分类领域的结合应用。我会遵循您提供的要求和结构模板,确保文章内容全面、深入且易于理解。让我们开始吧。贝叶斯网络与深度学习的结合:图像识别和分类关键词:贝叶斯网络、深度学习、图像识别、图像分类、概率推理、卷积神经网络、不确定性建模文章目录贝叶斯网络与深度学习的结合:
- JVM垃圾回收调优知识点整理
图灵农场
个人笔记jvm
目录1、JVM内存模型1.2、堆及垃圾回收1.3、JVM参数设置经验:1.4、对象逃逸分析:2、类加载2.1、类加载过程:2.2、类加载器分类:2.3、类加载机制:2.4、打破双亲委派机制:3、JVM内存分配机制4、如何判断对象可以被回收4.1、引用计数法4.2、可达性分析算法4.3、常见引用类型4.4、finalize()方法最终判定对象是否存活4.5、如何判断一个类是无用的类5、垃圾收集算法5
- 微信小程序学习笔记(7)
。。。。。.....
微信小程序前端
一、小程序API的3大分类①事件监听API特点:以on开头,用来监听某些事件的触发举例:wx.onWindowResize(functioncallback)监听窗口尺寸变化的事件②同步API特点1:以Sync结尾的API都是同步API特点2:同步API的执行结果,可以通过函数返回值直接获取,如果执行出错会抛出异常举例:wx.setStorageSync(‘key’,’value’)向本地存储中写
- 为了方便学习icss项目上的css技巧,我用next.js写了一个网站
前端next.js
icss-website一、项目简介与定位icss-website是一个基于Next.js14(AppRouter架构)开发的现代化CSS技巧展示平台,致力于为前端开发者、设计师和技术爱好者提供一个高效、优雅、易用的CSS奇技淫巧学习与交流空间。项目以GitHub上的iCSS仓库为内容源,通过API动态获取、分类、展示和高亮CSS相关的文章与代码示例,支持多主题、多语言、响应式布局和丰富的交互体验
- 计算机专业毕业设计选题指南(2025创新版)
程序员小天00
课程设计毕业设计小程序pythoneclipsejava
计算机专业毕业设计选题指南(2025创新版)一、选题方向全景图(按技术维度划分)智能服务系统开发技术架构:SpringBoot+Vue3+MySQL/MongoDB典型场景:●智慧校园:实验室预约系统、学术成果可视化平台●医疗健康:电子病历智能分析系统、慢性病管理助手●城市治理:垃圾分类智能识别系统、交通拥堵预测模型创新点:融合OCR识别/NLP技术,实现无感化服务跨平台应用开发技术选型:Unia
- java opencv 数字识别算法_[机器学习]基于OpenCV实现最简单的数字识别
后期小雨
javaopencv数字识别算法
本文将基于OpenCV实现简单的数字识别。这里以游戏AngryBirds为例,通过以下几个主要步骤对其中右上角的分数部分进行自动识别。1.学习分类器根据训练样本,选取模型训练产生数字分类器。这里的样本可以是通用的数字样本库(如NIST等),也可以是针对应用场景而制作的专门训练样本。前者优在泛化性,后者强在准确率,当然常用做法是将这两者结合,即在通用数字库基础上做修改。另外这里由于模式并不复杂,计算
- 基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)
神经网络15044
深度学习算法神经网络python深度学习django机器学习人工智能算法目标检测
基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)一、系统概述本系统结合YOLOv8目标检测和ResNet50图像分类算法,构建了一个智能线上问诊平台。系统支持用户上传医学影像(皮肤照片/X光片),自动分析并生成诊断报告,同时提供医生审核功能。二、技术栈后端框架:Django4.2数据库:MySQL8.0深度学习:YOLOv8:皮肤病变区域检测ResNet50:肺炎X光
- C语言数据类型
kim_puppy
c语言算法开发语言
数据类型1.1.定义何为类型,即类似事物共同特征。数据类型:类似数据的共同特征。例如:整数为整型类型,小数则为浮点型...丰富的数据类型能够让我们在C语言中描述好各种数据。1.2数据类型分类总体的数据类型分类可以概括为下面这张图:上图错误更正:布尔类型的正确写法:b为大写,即_Bool这里需要对布尔类型做出注意:C语言原来是使用整数0表示假,非零表示真。而之后出现了布尔类型,专门用来表示真假使用时
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- 机器学习-- 聚类
SunsPlanter
机器学习机器学习聚类人工智能
什么是聚类?Clustering可以简单地说,对有标注的数据分类,就是逻辑回归(属于有监督分类),对无标注的数据分类,就是聚类(属于无监督分类)聚类是一种无监督学习技术,其目标是根据样本之间的相似性将未标记的数据分组。比如,在一个假设的患者研究中,研究人员正在评估一项新的治疗方案。在试验期间,患者每周会报告自身症状的频率以及严重程度。研究人员可以使用聚类分析将对治疗反应相似的患者归为同一类。图1展
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- 【unity游戏开发——网络】网络游戏通信方案——强联网游戏(Socket长连接)、 弱联网游戏(HTTP短连接)
向宇it
【unity游戏开发——网络】网络unity游戏游戏引擎c#编辑器http
注意:考虑到热更新的内容比较多,我将热更新的内容分开,并全部整合放在【unity游戏开发——网络】专栏里,感兴趣的小伙伴可以前往逐一查看学习。文章目录一、联网游戏类型划分二、核心通信协议对比三、开发选择指南专栏推荐完结一、联网游戏类型划分类型通信特点代表游戏技术本质弱联网游戏按需连接,单次请求后立即断开消消乐、卡牌类(如《刀塔传奇》)短连接通信强联网游戏持续连接,实时双向数据交换《王者荣耀》《和平
- 《深入理解Kotlin协程》知识点汇总
岳锋
kotlin
一、协程的分类1.按调用栈分类。Kotlin协程通常被认为是一种无栈协程加粗样式的实现。因为Kotlin的控制流转,依靠对协程体本身编译生成的状态机的状态流转来实现,变量保存也是通过闭包语法来实现的。不过,Kotlin协程可以在挂起函数范围内的任意调用层次挂起。换句话说,我们启动一个Kotlin协程,可以在其中任意嵌套suspend函数,而这又恰恰是有栈协程最重要的特性之一。2.按调度方式分类。对
- (SERIES1) MacOS Terminal远程SSH连接Aliyun ECS服务器纯命令行模式下部署DM8教程(服务器环境Ubuntu 20.04LTS )
Ender-Shadows
达梦数据库ubuntumacos阿里云
1DM数据库版本介绍1.1版本区别 DM8目前的版本主要包括标准版、企业版、安全版和开发版。前三项的比较如表1-1所示。以适用场景为角度进行分类,标准版适用于小型应用开发,企业版适合生产环境级应用,安全版则在具备所有企业版基础上加入了对四权分立、强制访问控制、审计和实时侵害检测等功能上的补全,在安全性方面实现了更加全面完善的安全策略;至于开发版则专供开发者学习、测试、开发用途,有1年免费试用期,
- 量化AI价值的30个关键指标
mao_feng
人工智能AI
摘要:量化AI的战略价值人工智能(AI)成功集成到业务运营中超越了单纯的技术部署;它需要一种严格、可量化的方法来展示其价值。本报告系统地分类并解释了评估AI优势的基本指标,从核心模型性能到总体战略和道德考虑因素。必须制定多方面的衡量策略,将技术AI指标与运营效率、客户体验、财务绩效、战略优势和负责任的AI实践等有形业务成果直接联系起来。稳健的关键绩效指标(KPI)不仅仅是问责制的工具;它们是持续改
- Python 爬虫实战:抓取哔哩哔哩收藏夹视频(API 逆向 + 视频分类整理)
西攻城狮北
python爬虫音视频
引言哔哩哔哩(B站)作为国内知名的视频分享平台,拥有丰富多样的视频资源和活跃的用户社区。对于视频创作者、数据分析人员或爬虫学习者来说,抓取B站收藏夹中的视频数据,不仅能帮助我们更好地了解用户喜好和视频内容,还能为创作和研究提供有力支持。本文将深入浅出地讲解如何通过Python爬虫实现抓取哔哩哔哩收藏夹视频,并对其进行分类整理,涵盖从环境搭建、API逆向分析到数据处理与存储等关键步骤,旨在为读者提供
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><