redis基本数据结构

redis 基本数据结构.


redis的基本数据结构主要有: SDS动态字符串,链表,字典,哈希表,跳跃表,整数集合,压缩列表.

SDS 动态字符串

typedef char *sds;

struct sdshdr {
//记录已使用的长度
    int len;
//记录buf中未使用字符串
    int free;
//字节数据,保存字符串
    char buf[];
};

分配内存时,会多分配一个字节来存放'\0'结束标记.

redis基本数据结构_第1张图片

注意: 在sdshdr结构体中,buf未分配内存时,buf是不占空间的

int main(){

    printf("int --- %ld\n",sizeof(int));
    printf("struct sdshdr --- %ld\n", sizeof(struct sdshdr));
    return 0;
}
输出: 
int --- 4
struct sdshdr --- 8
//分配空间
sds sdsnewlen(const void *init, size_t initlen) {
    struct sdshdr *sh;

    if (init) {
        sh = zmalloc(sizeof(struct sdshdr)+initlen+1);
    } else {
        sh = zcalloc(sizeof(struct sdshdr)+initlen+1);
    }
    if (sh == NULL) return NULL;
    sh->len = initlen;
    sh->free = 0;
    if (initlen && init)
        memcpy(sh->buf, init, initlen);
    sh->buf[initlen] = '\0';
    return (char*)sh->buf;
}
//获取字符串长度
static inline size_t sdslen(const sds s) {
    struct sdshdr *sh = (void*)(s-(sizeof(struct sdshdr)));
    return sh->len;
}
//获取未使用空间
static inline size_t sdsavail(const sds s) {
    struct sdshdr *sh = (void*)(s-(sizeof(struct sdshdr)));
    return sh->free;
}

优点:

  • 常数复杂度获取字符串的长度
  • 杜绝缓冲区溢出
  • 减少修改字符串时重新分配内存的次数
    1. 空间预分配
    2. 惰性回收
  • 二进制安全
  • 兼容部分C字符串


    redis基本数据结构_第2张图片

链表

/*
 * 双端链表节点
 */
typedef struct listNode {

    // 前置节点
    struct listNode *prev;

    // 后置节点
    struct listNode *next;

    // 节点的值
    void *value;

} listNode;

/*
 * 双端链表迭代器
 */
typedef struct listIter {

    // 当前迭代到的节点
    listNode *next;

    // 迭代的方向
    int direction;

} listIter;

/*
 * 双端链表结构
 */
typedef struct list {

    // 表头节点
    listNode *head;

    // 表尾节点
    listNode *tail;

    // 节点值复制函数
    void *(*dup)(void *ptr);

    // 节点值释放函数
    void (*free)(void *ptr);

    // 节点值对比函数
    int (*match)(void *ptr, void *key);

    // 链表所包含的节点数量
    unsigned long len;

} list;
redis基本数据结构_第3张图片

字典

Key-Value

/*
 * 哈希表节点
 */
typedef struct dictEntry {
    
    // 键
    void *key;

    // 值
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
    } v;

    // 指向下个哈希表节点,形成链表
    struct dictEntry *next;

} dictEntry;

哈希表

/*
 * 哈希表
 *
 * 每个字典都使用两个哈希表,从而实现渐进式 rehash 。
 */
typedef struct dictht {
    
    // 哈希表数组
    dictEntry **table;

    // 哈希表大小
    unsigned long size;
    
    // 哈希表大小掩码,用于计算索引值
    // 总是等于 size - 1
    unsigned long sizemask;

    // 该哈希表已有节点的数量
    unsigned long used;

} dictht;

字典


/*
 * 字典
 */
typedef struct dict {

    // 类型特定函数
    dictType *type;

    // 私有数据
    void *privdata;

    // 哈希表
    dictht ht[2];

    // rehash 索引
    // 当 rehash 不在进行时,值为 -1
    int rehashidx; /* rehashing not in progress if rehashidx == -1 */

    // 目前正在运行的安全迭代器的数量
    int iterators; /* number of iterators currently running */

} dict;

字典的普通状态:


redis基本数据结构_第4张图片
  • 索引值计算
    h = dictHashKey(ht, key) & ht->sizemask;
  • 解决键冲突
    当有两个或以上数量的键被分配到哈希表上的同一索引的时候,我们称这些键发生了冲突,redis通过链地址法来解决冲突
  • rehash
    当哈希表保存的键值对数量太多或者太少时,要进行rehash
    渐进式rehash: https://www.jianshu.com/p/9c84856cd5c0

跳跃表

跳跃表节点

/*
 * 跳跃表节点
 */
typedef struct zskiplistNode {

    // 成员对象
    robj *obj;

    // 分值
    double score;

    // 后退指针
    struct zskiplistNode *backward;

    // 层
    struct zskiplistLevel {

        // 前进指针
        struct zskiplistNode *forward;

        // 跨度
        unsigned int span;

    } level[];

} zskiplistNode;

跳跃表


/*
 * 跳跃表
 */
typedef struct zskiplist {

    // 表头节点和表尾节点
    struct zskiplistNode *header, *tail;

    // 表中节点的数量
    unsigned long length;

    // 表中层数最大的节点的层数
    int level;

} zskiplist;
redis基本数据结构_第5张图片
//随机获取层数
int zslRandomLevel(void) {
    int level = 1;

    while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
        level += 1;

    return (level
  • 跳跃表是有序集合的底层实现
  • 跳跃表根据分值的大小进行排序,当分值大小相同时,按照成员对象的大小排序
    详细跳跃表讲解:
    (http://blog.csdn.net/gqtcgq/article/details/50613896)

整数集合

整数集合是集合键的底层实现之一,当一个集合只包含整数值,并且这个集合元素不多时,redis会使用整数集合作为集合键的底层实现.

typedef struct intset {
    
    // 编码方式
    uint32_t encoding;

    // 集合包含的元素数量
    uint32_t length;

    // 保存元素的数组
    int8_t contents[];

} intset;

encoding: 表示整数集合中,存放的是那种长度的整数:16位,32位,64位.


redis基本数据结构_第6张图片
  • 升级
    当添加一个整数到整数集合中时,如果新元素的长度比集合中的编码方式都要长时,要发生升级动作 , 整数集合只支持升级操作,不支持降级操作.

/* Insert an integer in the intset 
 * 
 * 尝试将元素 value 添加到整数集合中。
 *
 * *success 的值指示添加是否成功:
 * - 如果添加成功,那么将 *success 的值设为 1 。
 * - 因为元素已存在而造成添加失败时,将 *success 的值设为 0 。
 *
 * T = O(N)
 */
intset *intsetAdd(intset *is, int64_t value, uint8_t *success) {

    // 计算编码 value 所需的长度
    uint8_t valenc = _intsetValueEncoding(value);
    uint32_t pos;

    // 默认设置插入为成功
    if (success) *success = 1;

    /* Upgrade encoding if necessary. If we need to upgrade, we know that
     * this value should be either appended (if > 0) or prepended (if < 0),
     * because it lies outside the range of existing values. */
    // 如果 value 的编码比整数集合现在的编码要大
    // 那么表示 value 必然可以添加到整数集合中
    // 并且整数集合需要对自身进行升级,才能满足 value 所需的编码
    if (valenc > intrev32ifbe(is->encoding)) {
        /* This always succeeds, so we don't need to curry *success. */
        // T = O(N)
        return intsetUpgradeAndAdd(is,value);
    } else {
        // 运行到这里,表示整数集合现有的编码方式适用于 value

        /* Abort if the value is already present in the set.
         * This call will populate "pos" with the right position to insert
         * the value when it cannot be found. */
        // 在整数集合中查找 value ,看他是否存在:
        // - 如果存在,那么将 *success 设置为 0 ,并返回未经改动的整数集合
        // - 如果不存在,那么可以插入 value 的位置将被保存到 pos 指针中
        //   等待后续程序使用
        if (intsetSearch(is,value,&pos)) {
            if (success) *success = 0;
            return is;
        }

        // 运行到这里,表示 value 不存在于集合中
        // 程序需要将 value 添加到整数集合中
    
        // 为 value 在集合中分配空间
        is = intsetResize(is,intrev32ifbe(is->length)+1);
        // 如果新元素不是被添加到底层数组的末尾
        // 那么需要对现有元素的数据进行移动,空出 pos 上的位置,用于设置新值
        // 举个例子
        // 如果数组为:
        // | x | y | z | ? |
        //     |<----->|
        // 而新元素 n 的 pos 为 1 ,那么数组将移动 y 和 z 两个元素
        // | x | y | y | z |
        //         |<----->|
        // 这样就可以将新元素设置到 pos 上了:
        // | x | n | y | z |
        // T = O(N)
        if (pos < intrev32ifbe(is->length)) intsetMoveTail(is,pos,pos+1);
    }

    // 将新值设置到底层数组的指定位置中
    _intsetSet(is,pos,value);

    // 增一集合元素数量的计数器
    is->length = intrev32ifbe(intrev32ifbe(is->length)+1);

    // 返回添加新元素后的整数集合
    return is;
}

升级操作:

/* Upgrades the intset to a larger encoding and inserts the given integer. 
 *
 * 根据值 value 所使用的编码方式,对整数集合的编码进行升级,
 * 并将值 value 添加到升级后的整数集合中。
 *
 * 返回值:添加新元素之后的整数集合
 *
 * T = O(N)
 */
static intset *intsetUpgradeAndAdd(intset *is, int64_t value) {
    
    // 当前的编码方式
    uint8_t curenc = intrev32ifbe(is->encoding);

    // 新值所需的编码方式
    uint8_t newenc = _intsetValueEncoding(value);

    // 当前集合的元素数量
    int length = intrev32ifbe(is->length);

    // 根据 value 的值,决定是将它添加到底层数组的最前端还是最后端
    // 注意,因为 value 的编码比集合原有的其他元素的编码都要大
    // 所以 value 要么大于集合中的所有元素,要么小于集合中的所有元素
    // 因此,value 只能添加到底层数组的最前端或最后端
    int prepend = value < 0 ? 1 : 0;

    /* First set new encoding and resize */
    // 更新集合的编码方式
    is->encoding = intrev32ifbe(newenc);
    // 根据新编码对集合(的底层数组)进行空间调整
    // T = O(N)
    is = intsetResize(is,intrev32ifbe(is->length)+1);

    /* Upgrade back-to-front so we don't overwrite values.
     * Note that the "prepend" variable is used to make sure we have an empty
     * space at either the beginning or the end of the intset. */
    // 根据集合原来的编码方式,从底层数组中取出集合元素
    // 然后再将元素以新编码的方式添加到集合中
    // 当完成了这个步骤之后,集合中所有原有的元素就完成了从旧编码到新编码的转换
    // 因为新分配的空间都放在数组的后端,所以程序先从后端向前端移动元素
    // 举个例子,假设原来有 curenc 编码的三个元素,它们在数组中排列如下:
    // | x | y | z | 
    // 当程序对数组进行重分配之后,数组就被扩容了(符号 ? 表示未使用的内存):
    // | x | y | z | ? |   ?   |   ?   |
    // 这时程序从数组后端开始,重新插入元素:
    // | x | y | z | ? |   z   |   ?   |
    // | x | y |   y   |   z   |   ?   |
    // |   x   |   y   |   z   |   ?   |
    // 最后,程序可以将新元素添加到最后 ? 号标示的位置中:
    // |   x   |   y   |   z   |  new  |
    // 上面演示的是新元素比原来的所有元素都大的情况,也即是 prepend == 0
    // 当新元素比原来的所有元素都小时(prepend == 1),调整的过程如下:
    // | x | y | z | ? |   ?   |   ?   |
    // | x | y | z | ? |   ?   |   z   |
    // | x | y | z | ? |   y   |   z   |
    // | x | y |   x   |   y   |   z   |
    // 当添加新值时,原本的 | x | y | 的数据将被新值代替
    // |  new  |   x   |   y   |   z   |
    // T = O(N)
    while(length--)
        _intsetSet(is,length+prepend,_intsetGetEncoded(is,length,curenc));

    /* Set the value at the beginning or the end. */
    // 设置新值,根据 prepend 的值来决定是添加到数组头还是数组尾
    if (prepend)
        _intsetSet(is,0,value);
    else
        _intsetSet(is,intrev32ifbe(is->length),value);

    // 更新整数集合的元素数量
    is->length = intrev32ifbe(intrev32ifbe(is->length)+1);

    return is;
}

压缩列表

压缩列表是列表键和哈希键的底层实现之一,当一个列表键只包含少量列表项,并且每个列表项要么是小数值,要么是长度比较短的字符串,那么redis会用压缩列表作为列表键的底层实现.

压缩列表整体结构:



redis基本数据结构_第7张图片

空 ziplist 示例图:


area        |<---- ziplist header ---->|<-- end -->|

size          4 bytes   4 bytes 2 bytes  1 byte
            +---------+--------+-------+-----------+
component   | zlbytes | zltail | zllen | zlend     |
            |         |        |       |           |
value       |  1011   |  1010  |   0   | 1111 1111 |
            +---------+--------+-------+-----------+
                                       ^
                                       |
                               ZIPLIST_ENTRY_HEAD
                                       &
address                        ZIPLIST_ENTRY_TAIL
                                       &
                               ZIPLIST_ENTRY_END

非空 ziplist 示例图

area        |<---- ziplist header ---->|<----------- entries ------------->|<-end->|

size          4 bytes  4 bytes  2 bytes    ?        ?        ?        ?     1 byte
            +---------+--------+-------+--------+--------+--------+--------+-------+
component   | zlbytes | zltail | zllen | entry1 | entry2 |  ...   | entryN | zlend |
            +---------+--------+-------+--------+--------+--------+--------+-------+
                                       ^                          ^        ^
address                                |                          |        |
                                ZIPLIST_ENTRY_HEAD                |   ZIPLIST_ENTRY_END
                                                                  |
                                                        ZIPLIST_ENTRY_TAIL

entry结构:

/*
 * 保存 ziplist 节点信息的结构
 */
typedef struct zlentry {

    // prevrawlen :前置节点的长度
    // prevrawlensize :编码 prevrawlen 所需的字节大小
    unsigned int prevrawlensize, prevrawlen;

    // len :当前节点值的长度
    // lensize :编码 len 所需的字节大小
    unsigned int lensize, len;

    // 当前节点 header 的大小
    // 等于 prevrawlensize + lensize
    unsigned int headersize;

    // 当前节点值所使用的编码类型
    unsigned char encoding;

    // 指向当前节点的指针
    unsigned char *p;

} zlentry;

  • previous_entry_length
    以字节为单位,记录了压缩列表前一个节点的长度.,该属性的长度可以是1字节,或者5字节. 如果前节点的长度小于254字节,则previous_entry_length的长度为1字节,如果前一节点的长度大于254字节,则previous_entry_length的长度为5字节.其属性的第一字节被设置为0xFE,而后4个字节保存前一节点的长度.

  • encoding
    记录节点的content属性保存数据的类型及长度
    字节数组编码


    redis基本数据结构_第8张图片

    整数编码


    redis基本数据结构_第9张图片
  • content
    保存节点的值
    字节数组:



    整数值:


连锁更新:
有一种情况,在一个压缩列表中,有多个连续的,长度在250字节---253字节的节点,他们的previous_entry_length长度都是1字节,当我们在头部插入一个大于254字节长度的节点时,第二个节点要用5个字节来保存前一个节点的长度,但是现在只有1个字节,要进行扩容到5字节,而第三个节点要保存第二个节点的长度,由于第二个节点的previous_entry_length属性由1字节变为了5字节,第二个节点的整体长度也超过了254,第三个节点也需要扩容.这样一直更新下去,就会发生连锁更新.
连锁更新最坏的复杂度为O(N²);

添加节点到要列表或者从压缩列表删除节点,都会发生连锁更新操作,但是这个几率并不高.

参考----

你可能感兴趣的:(redis基本数据结构)