注意:如果你定义了一个扩展向一个已有类型添加新功能,那么这个新功能对该类型的所有已有实例中都是可用的,即使它们是在你的这个扩展的前面定义的也一样。
声明一个扩展使用关键字extension:
extension SomeType { // 加到SomeType的新功能写到这里 }
extension SomeType: SomeProtocol, AnotherProctocol { // 协议实现写到这里 }
扩展可以向已有类型添加计算型实例属性和计算型类型属性。下面的例子向 Swift 的内建Double类型添加了5个计算型实例属性,从而提供与距离单位协作的基本支持。
extension Double { // 扩展的都是计算型属性 var km: Double { return self * 1_000.0 } var m : Double { return self } var cm: Double { return self / 100.0 } var mm: Double { return self / 1_000.0 } var ft: Double { return self / 3.28084 } } let oneInch = 25.4.mm println("One inch is \(oneInch) meters") // 打印输出:"One inch is 0.0254 meters" let threeFeet = 3.ft println("Three feet is \(threeFeet) meters") // 打印输出:"Three feet is 0.914399970739201 meters"
这些属性是只读的计算型属性,从简考虑它们不用get关键字表示。它们的返回值是Double型,而且可以用于所有接受Double的数学计算中:
let aMarathon = 42.km + 195.m println("A marathon is \(aMarathon) meters long") // 打印输出:"A marathon is 42495.0 meters long"
注意:扩展可以添加新的计算属性,但是不可以添加存储属性,也不可以向已有属性添加属性观察者(property observers)。
下面的例子定义了一个用于描述几何矩形的定制结构体Rect。这个例子同时定义了两个辅助结构体Size和Point,它们都把0.0作为所有属性的默认值:
struct Size { var width = 0.0, height = 0.0 } struct Point { var x = 0.0, y = 0.0 } struct Rect { var origin = Point() var size = Size() }
let defaultRect = Rect() let memberwiseRect = Rect(origin: Point(x: 2.0, y: 2.0), size: Size(width: 5.0, height: 5.0))
extension Rect { // 扩展Rect init(center: Point, size: Size) { let originX = center.x - (size.width / 2) let originY = center.y - (size.height / 2) self.init(origin: Point(x: originX, y: originY), size: size) } }
这个新的构造器首先根据提供的center和size值计算一个合适的原点。然后调用该结构体自动的成员构造器init(origin:size:),该构造器将新的原点和大小存到了合适的属性中:
let centerRect = Rect(center: Point(x: 4.0, y: 4.0), size: Size(width: 3.0, height: 3.0)) // centerRect的原点是 (2.5, 2.5),大小是 (3.0, 3.0)
注意:如果你使用扩展提供了一个新的构造器,你必须保证构造过程能够让所有实例完全初始化。
extension Int { // 扩展Int
// 扩展了接收一个()->()参数的函数,没有返回值的函数
func repetitions(task: () -> ()) {
for i in 0..self {
task()
}
}
}
// 使用 3.repetitions({ println("Hello!") }) // Hello! // Hello! // Hello!
// 使用闭包调用更加简洁 3.repetitions{ println("Goodbye!") } // Goodbye! // Goodbye! // Goodbye!
通过扩展添加的实例方法也可以修改该实例本身。结构体和枚举类型中修改self或其属性的方法必须将该实例方法标注为mutating
extension Int { mutating func square() { // 变异方法 self = self * self } } var someInt = 3 someInt.square() // someInt 现在值是 9
extension Int { subscript(digitIndex: Int) -> Int { // 扩展脚本 var decimalBase = 1 for _ in 1...digitIndex { decimalBase *= 10 } return (self / decimalBase) % 10 } } 746381295[0] // returns 5 746381295[1] // returns 9 746381295[2] // returns 2 746381295[8] // returns 7
如果该Int值没有足够的位数,即下标越界,那么上述实现的下标会返回0:
746381295[9] //returns 0,
扩展可以向已有的类、结构体和枚举添加新的嵌套类型:
extension Character { enum Kind { case Vowel, Consonant, Other } var kind: Kind { switch String(self).lowercaseString { case "a", "e", "i", "o", "u": return .Vowel case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z": return .Consonant default: return .Other } } }
现在,这个嵌套枚举可以和一个Character值联合使用了:
func printLetterKinds(word: String) { println("'\\(word)' is made up of the following kinds of letters:") for character in word { switch character.kind { case .Vowel: print("vowel ") case .Consonant: print("consonant ") case .Other: print("other ") } } print("\n") } printLetterKinds("Hello") // 'Hello' is made up of the following kinds of letters: // consonant vowel consonant consonant vowel
注意:由于已知character.kind是Character.Kind型,所以Character.Kind中的所有成员值都可以使用switch语句里的形式简写,比如使用 .Vowel代替Character.Kind.Vowel
2015-03-24
20:13:18