Python 并发编程

线程

线程调用的两种形式

1 . 直接调用

import threading
import time


def say_hi(words):
    print("我要说的话: %s" % words)


thread_1 = threading.Thread(target=say_hi, args=("我是线程1",),name= "T1")
thread_2 = threading.Thread(target=say_hi, args=("我是线程2",),name= "T2")

thread_1.start()
thread_2.start()

print(thread_1.getName())
print(thread_2.getName())

  1. 继承式调用
import threading
import time


class MyThread(threading.Thread):
    def __init__(self,num):
        threading.Thread.__init__(self)
        self.num = num

    def run(self):#定义每个线程要运行的函数

        print("running on number:%s" %self.num)

        time.sleep(3)

if __name__ == '__main__':

    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start()
    
    print("ending......")

Thread实例的方法

join():在子线程完成运行之前,这个子线程的父线程将一直被阻塞。

setDaemon(True):

         将线程声明为守护线程,必须在start() 方法调用之前设置, 如果不设置为守护线程程序会被无限挂起。这个方法基本和join是相反的。

         当我们 在程序运行中,执行一个主线程,如果主线程又创建一个子线程,主线程和子线程 就分兵两路,分别运行,那么当主线程完成

         想退出时,会检验子线程是否完成。如 果子线程未完成,则主线程会等待子线程完成后再退出。但是有时候我们需要的是 只要主线程

         完成了,不管子线程是否完成,都要和主线程一起退出,这时就可以 用setDaemon方法啦
# run():  线程被cpu调度后自动执行线程对象的run方法
# start():启动线程活动。
# isAlive(): 返回线程是否活动的。
# getName(): 返回线程名。
# setName(): 设置线程名。

threading模块提供的一些方法:
# threading.currentThread(): 返回当前的线程变量。
# threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
# threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

同步锁

R=threading.Lock()
 
####
def sub():
    global num
    R.acquire()
    temp=num-1
    time.sleep(0.1)
    num=temp
    R.release()

递归锁

递归锁,其中维护一个变量,当这个变量为正值时,不允许其他进程进入

lockA=threading.Lock()
lockB=threading.Lock()

Event

set -> wait -> clear(由不同的调用)

An event is a simple synchronization object;the event represents an internal flag,

and threads can wait for the flag to be set, or set or clear the flag themselves.


event = threading.Event()

# a client thread can wait for the flag to be set
event.wait()

# a server thread can set or reset it
event.set()
event.clear()


If the flag is set, the wait method doesn’t do anything.
If the flag is cleared, wait will block until it becomes set again.
Any number of threads may wait for the same event.



import threading,time
class Boss(threading.Thread):
    def run(self):
        print("BOSS:今晚大家都要加班到22:00。")
        print(event.isSet())
        event.set()
        time.sleep(5)
        print("BOSS:<22:00>可以下班了。")
        print(event.isSet())
        event.set()
class Worker(threading.Thread):
    def run(self):
        event.wait()
        print("Worker:哎……命苦啊!")
        time.sleep(1)
        event.clear()
        event.wait()
        print("Worker:OhYeah!")
if __name__=="__main__":
    event=threading.Event()
    threads=[]
    for i in range(5):
        threads.append(Worker())
    threads.append(Boss())
    for t in threads:
        t.start()
    for t in threads:
        t.join()

信号量

信号量用来控制线程并发数的,BoundedSemaphore或Semaphore管理一个内置的计数 器,每当调用acquire()时-1,调用release()时+1。 计数器不能小于0,当计数器为 0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。(类似于停车位的概念)
BoundedSemaphore与Semaphore的唯一区别在于前者将在调用release()时检查计数 器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

import threading,time
class myThread(threading.Thread):
    def run(self):
        if semaphore.acquire():
            print(self.name)
            time.sleep(5)
            semaphore.release()
if __name__=="__main__":
    semaphore=threading.Semaphore(5)
    thrs=[]
    for i in range(100):
        thrs.append(myThread())
    for t in thrs:
        t.start()

多线程利器:队列

队列的使用方法

创建一个“队列”对象
import Queue
q = Queue.Queue(maxsize = 10)
Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。

将一个值放入队列中
q.put(10)
调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为
1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。

将一个值从队列中取出
q.get()
调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,
get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。

Python Queue模块有三种队列及构造函数:
1、Python Queue模块的FIFO队列先进先出。   class queue.Queue(maxsize)
2、LIFO类似于堆,即先进后出。               class queue.LifoQueue(maxsize)
3、还有一种是优先级队列级别越低越先出来。        class queue.PriorityQueue(maxsize)

此包中的常用方法(q = Queue.Queue()):
q.qsize() 返回队列的大小
q.empty() 如果队列为空,返回True,反之False
q.full() 如果队列满了,返回True,反之False
q.full 与 maxsize 大小对应
q.get([block[, timeout]]) 获取队列,timeout等待时间
q.get_nowait() 相当q.get(False)
非阻塞 q.put(item) 写入队列,timeout等待时间
q.put_nowait(item) 相当q.put(item, False)
q.task_done() 队列中的数据发生变化后,发出信号
q.join() 收到信号后,停止阻塞

生产者消费者模式

import time,random
import queue,threading

q = queue.Queue()

def Producer(name):
  count = 0
  while count <10:
    print("making........")
    time.sleep(random.randrange(3))
    q.put(count)
    print('Producer %s has produced %s baozi..' %(name, count))
    count +=1
    #q.task_done()
    #q.join()
    print("ok......")
def Consumer(name):
  count = 0
  while count <10:
    time.sleep(random.randrange(4))
    if not q.empty():
        data = q.get()
        #q.task_done()
        #q.join()
        print(data)
        print('\033[32;1mConsumer %s has eat %s baozi...\033[0m' %(name, data))
    else:
        print("-----no baozi anymore----")
    count +=1

p1 = threading.Thread(target=Producer, args=('A',))
c1 = threading.Thread(target=Consumer, args=('B',))
# c2 = threading.Thread(target=Consumer, args=('C',))
# c3 = threading.Thread(target=Consumer, args=('D',))
p1.start()
c1.start()
# c2.start()
# c3.start()

多进程模块

由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。
multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。

多进程模块的使用

# 实例调用
from multiprocessing import Process
import time
def f(name):
    time.sleep(1)
    print('hello', name,time.ctime())

if __name__ == '__main__':
    p_list=[]
    for i in range(3):
        p = Process(target=f, args=('alvin',))
        p_list.append(p)
        p.start()
    for i in p_list:
        p.join()
    print('end')
# 继承类
from multiprocessing import Process
import time

class MyProcess(Process):
    def __init__(self):
        super(MyProcess, self).__init__()
        #self.name = name

    def run(self):
        time.sleep(1)
        print ('hello', self.name,time.ctime())


if __name__ == '__main__':
    p_list=[]
    for i in range(3):
        p = MyProcess()
        p.start()
        p_list.append(p)

    for p in p_list:
        p.join()

    print('end')
# 例子
from multiprocessing import Process
import os
import time
def info(title):
  
    print("title:",title)
    print('parent process:', os.getppid())
    print('process id:', os.getpid())

def f(name):
    info('function f')
    print('hello', name)

if __name__ == '__main__':
    info('main process line')
    time.sleep(1)
    print("------------------")
    p = Process(target=info, args=('yuan',))
    p.start()
    p.join()

Process 类

Process([group [, target [, name [, args [, kwargs]]]]])

  group: 线程组,目前还没有实现,库引用中提示必须是None; 
  target: 要执行的方法; 
  name: 进程名; 
  args/kwargs: 要传入方法的参数。

实例方法:

  is_alive():返回进程是否在运行。

  join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。

  start():进程准备就绪,等待CPU调度

  run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。

  terminate():不管任务是否完成,立即停止工作进程

属性:

  daemon:和线程的setDeamon功能一样

  name:进程名字。

  pid:进程号。

你可能感兴趣的:(Python 并发编程)