- 【Python篇】深入机器学习核心:XGBoost 从入门到实战
半截诗
Pythonpython机器学习深度学习分类回归数据分析XGBoost
文章目录XGBoost完整学习指南:从零开始掌握梯度提升1.前言2.什么是XGBoost?2.1梯度提升简介3.安装XGBoost4.数据准备4.1加载数据4.2数据集划分5.XGBoost基础操作5.1转换为DMatrix格式5.2设置参数5.3模型训练5.4预测6.模型评估7.超参数调优7.1常用超参数7.2网格搜索8.XGBoost特征重要性分析9.高级功能扩展9.1模型解释与可解释性9.2
- 【视觉惯性SLAM:十五、ORB-SLAM3中的IMU预积分】
KeyPan
视觉惯性SLAM计算机视觉视觉检测
15.1视觉惯性紧耦合15.1.1视觉惯性紧耦合的重要性视觉惯性紧耦合(Visual-InertialTightCoupling)在ORB-SLAM3中的作用不可替代,是实现高鲁棒性和高精度定位的核心技术。单一的视觉SLAM主要依赖于图像特征进行定位和建图,这种方法虽然能够在许多环境中获得良好的效果,但其鲁棒性容易受到动态变化、光照条件恶化以及环境特征稀缺等因素的限制。例如,昏暗场景或快速运动可能
- python概述_理解Python数据类:Dataclass 的特征概述 (上)
weixin_39875842
python概述
原标题UnderstandingPythonDataclasses—Part1,作者为ShikharChauhan。这是一个包含两部分的博文:这一篇是Dataclass的特征概述下一篇是Dataclassfields的概述引言Dataclasses是一些适合于存储数据对象(dataobject)的Python类。你可能会问,什么是数据对象?下面是一个并不详尽的用于定义数据对象的特征列表:他们存储并
- Git 的引用规格(refspec)语法
张紫娃
GITgitelasticsearch大数据
目录引用规格语法格式常见用法强制-f和+的区别gitfetchoriginremote-branch:local-branch和gitpushoriginlocal-branch:remote-branch区别引用规格语法格式格式如下:[+]:常见用法#fetchgitfetchorigin:从远程仓库origin的分支拉取最新的提交,并将其创建或更新为本地的分支gitfetchorigin:re
- leetcode 485 python
weixin_36908057
leetcode
Givenabinaryarray,findthemaximumnumberofconsecutive1sinthisarray.Example1:Input:[1,1,0,1,1,1]Output:3Explanation:Thefirsttwodigitsorthelastthreedigitsareconsecutive1s.Themaximumnumberofconsecutive1sis
- mac运行第一个java_Mac下第一个java-servelet程序
老纪聊数码
mac运行第一个java
可学习到:设置环境变量方便运行命令和编译程序。servlet-api.jar中包括了servlet相关的api和类tomcat是servlet的容器,没有容器程序跑不起来。tomcat下载地址:http://tomcat.apache.org/我下载的是:apache-tomcat-7.0.67.tar.gz解压开之后放到usr/local目录中tomcat目录启动/usr/local/apach
- 集成AI离线免费,全平台毫秒级快速处理!
纪元A梦
资源分享人工智能科技电脑软件抠图
随着PS技术的发展,大家对图像的要求和处理更加的多样化,其中,抠图作为一种常见的图像处理操作,并不是每个小伙伴都完全掌握PS技能,对于那些复杂的抠图操作往往会显得捉襟见肘,近两年随着AI技术的进步,各类软件都和AI集合,希望通过AI快速、高效的实现某些操作;分享一款免费、离线并且内嵌AI模型的抠图工具:鲜艺AI抠图v3.1;获取方式:https://pan.baidu.com/s/1gej6HL4
- openwrt下oaf插件编译安装,实现上网行为监控
月光技术杂谈
OpenWRTopenwrt健康上网上网管控青少年模式健康使用屏幕OpenAppFilter路由器
文章目录入门级APP青少年模式设备屏幕使用时间电脑浏览器使用时间限制Surpal介绍安装使用进阶级专业级旁路由方案openwrt路由器固件编译OAF(OpenAppFilter)安装编译带有oaf的固件固件烧写设备上电启动应用特征库设置黑白名单及应用访问限制骨灰级ref守护孩子视力,用科技“锁”住屏幕时间的秘籍马上又要寒假,除了说教,如何利用一些技术手段统计和限制孩子电子屏幕使用时间,做到健康上网
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 快速傅里叶变换
华东算法王(原聪明的小孩子
小孩哥总结MIT线性代数线性代数矩阵
快速傅里叶变换(FFT)快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像分析、数据压缩、声音合成等领域。传统的离散傅里叶变换算法的计算复杂度较高,而快速傅里叶变换通过减少计算量,大大提高了运算速度。1.离散傅里叶变换(DFT)离散傅里叶变换(DFT)将离散的时间信号变换到频域。对于一个长度为(N)的离散序
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- 【黑马python:函数】51-61
asaasaaax
python
本节目录一、前言二、函数的基础定义语法1.定义形式2.练习案例:查核酸三、函数的传入参数1.语法解析2.案例升级:核酸四、函数的返回值1.语法格式2.返回值的None类型五、函数的说明文档六、函数的嵌套调用七、变量在函数中的作用域1.局部变量与全局变量2.global关键字八、函数综合案例:ATM一、前言让我们在PyCharm中完成一个案例需求:不使用内置函数len(),完成字符串长度的计算。示例
- 《多模态语言模型:一个开放探索的技术新领域》
XianxinMao
语言模型人工智能算法
核心主题多模态语言模型的特点仍处于探索和定义阶段没有固定的标准任务和评估方法研究方向高度开放技术路径主要存在两种方法:后期融合(LateFusion)从语言模型backbone开始添加图像编码器效果稳定,成本可控早期融合(EarlyFusion)从多模态数据集预训练效果尚不明显需要更大规模计算资源开放和透明的重要性促进知识累积和技术迭代降低技术准入门槛避免技术垄断便于安全性审计主要挑战技术层面数据
- Flink 常见面试题
知否&知否
flink大数据kafka
1、Flink的四大特征(基石)checkpoint:基于Chandy-Lamport算法,实现了分布式一致性快照,提供了一致性的语义。State:丰富的StateAPI。ValueState,ListState,MapState,BroadcastState.Time:实现了Watemark机制,乱序数据处理,迟到数据容忍。Window:开箱即用的滚动、滑动、会话窗口。以及灵活的自定义窗口。2、
- Kotlin Bytedeco OpenCV 图像图像55 图像透视变换
深色風信子
kotlinopencv透视变换bytedeco
KotlinBytedecoOpenCV图像图像53图像透视变换1添加依赖2测试代码3测试结果1添加依赖4.0.0com.xuKotlinOpenCV1.02.0.0UTF-8official1.8mavenCentralhttps://repo1.maven.org/maven2/cn.hutoolhutool-all5.8.29org.apache.commonscommons-compres
- 3D UNet和Swin-UNETR
学無芷境
计算机视觉
3DUNet和Swin-UNETR都是用于医学图像分析的深度学习网络,它们对三维(3D)数据进行特征提取和分割。3DUNet3DUNet是UNet架构的一个变体,专门设计用于处理三维医学图像数据。UNet最初是为二维(2D)图像分割任务设计的,具有典型的编码器-解码器结构。3DUNet扩展了这种架构,以便更好地处理具有深度信息的体积数据,如CT或MRI扫描。主要特点:编码器:逐渐下采样图像,提取并
- AUTOSAR汽车电子嵌入式编程精讲300篇-智能网联汽车CAN总线-基于电压信号的CAN总线入侵检测系统设计与实现
格图素书
汽车网络
目录前言入侵检测系统研究现状入侵检测系统建模CAN总线入侵检测威胁模型DeepSVDD模型入侵检测系统方案设计挑战和解决方案差分信号的采集与处理差分信号的特征提取入侵检测模型的设计入侵检测系统性能评估实验环境设置不同的车辆状态不同数量的攻击目标不同发送频率的攻击消息DeepSVDD模型与SVDD模型的比较本文篇幅较长,分为多篇,文章索引详见智能网联汽车CAN总线-发展现状智能网联汽车CAN总线-智
- 推荐3D UNet实现:深度学习3D体素数据语义分割的利器!
滑辰煦Marc
推荐3DUNet实现:深度学习3D体素数据语义分割的利器!去发现同类优质开源项目:https://gitcode.com/在这个快速发展的深度学习时代,3DUNet已经成为3D图像处理领域中不可或缺的工具,尤其在医疗影像分析和3D物体识别等任务上展现出强大的潜力。这个开源项目为我们提供了一个高效、灵活的3DUNet实现,支持Tensorflow、PyTorch和Chainer三种主流深度学习框架。
- 3D U-Net CNN医学图像分割项目教程
尤辰城Agatha
3DU-NetCNN医学图像分割项目教程3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN1.项目介绍3DU-NetCNN是由Ellisdg开发的Python实现,专门用于医学图像
- HarmonyOS Next应用开发——图像PixelMap变换
【高心星出品】图像变换图片处理指对PixelMap进行相关的操作,如获取图片信息、裁剪、缩放、偏移、旋转、翻转、设置透明度、读写像素数据等。图片处理主要包括图像变换、位图操作,本文介绍图像变换。图形裁剪//裁剪图片x,y为裁剪的起始坐标,size为裁剪的图片宽和高temp.cropSync({x:20,y:20,size:{width:this.imagewidth-20,height:this.
- 通过Java代码实现图片的放大和缩小
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- MATLAB语言的计算机基础
疯狂小小小码农
包罗万象golang开发语言后端
MATLAB语言的计算机基础引言在当今信息技术飞速发展的时代,编程能力已成为当代人士必备的一项基本技能。MATLAB(矩阵实验室)作为一种高级编程语言和环境,广泛应用于数据分析、算法开发、模型创建、数字图像处理和计算机视觉等多个领域。MATLAB以其强大的矩阵运算和可视化能力,成为了科研人员和工程师的重要工具,尤其在数学、物理、工程等学科中,它的应用不可或缺。本文将从MATLAB的基本概念、环境搭
- 大数据最新医学图像分割 3D nnUNet全流程快速实现_医学图像分割步骤
2401_84182020
程序员大数据
第一步:选择一个你能找的路径位置(这很重要),在这个位置打开终端,输入gitclonehttps://github.com/MIC-DKFZ/nnUNet.git,将nnUNet的代码下载到这个位置第二步:终端内定位到下载的nnUNet文件夹cdnnUNet,或者直接在对应位置打开终端第三步:开始安装,pipinstall-e.2数据整理2.1数据存放形式首先,nnUNet有自己的一套数据文件夹的
- Laplace方法
懒洋洋爱睡觉
线性代数概率论机器学习
Laplace方法(拉普拉斯方法)前言:Laplace方法,又称Laplace定理,整体思想就是抓极值部分和局部化原理。适用于∫abfn(x)g(x)dx\int_a^bf^n(x)g(x)dx∫abfn(x)g(x)dx型积分的渐近估计,要记得可以通过变形和换元法转化为标准模型。定义:Laplace方法是对实函数的形如Laplace方法是对实函数的形如Laplace方法是对实函数的形如F(λ)=
- OpenCV实例应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
5.0图像的腐蚀应用完整代码:importcv2importnumpyasnpdeferode():img=cv2.imread('./image/dige.png')kernel=np.ones((3,3),np.uint8)erosion=cv2.erode(img,kernel,iterations=1)erosion1=cv2.erode(img,kernel,iterations=2)r
- opencv图像基础学习
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
2.3图像的加密解密源码如下:importcv2importnumpyasnpimportmatplotlib.pyplotaspltdefpassImg():img=cv2.imread('./image/cat.jpg',0)h,w=img.shape#生成一个密码,加密key_img=np.random.randint(0,256,size=(h,w),dtype=np.uint8)img_
- 深度学习模块C2f代码详解
你是狒狒吗
目标检测人工智能计算机视觉pytorchYOLO神经网络
C2f是一个用于构建卷积神经网络(CNN)的模块,特别是在YOLOv5和YOLOv8等目标检测模型中。这个模块是一个改进的CSP(CrossStagePartial)Bottleneck结构,旨在提高计算效率和特征提取能力。下面是对C2f类的详细解释:类定义和初始化Python复制classC2f(nn.Module):“”“FasterImplementationofCSPBottleneckw
- jdbc连接出现ServerTimezone问题
一个小坑货
常见错误积累mysqljava
代码中添加时区需要在jdbc的url连接中添加serverTimezone=Asia/Shanghai。例如:jdbc:mysql://localhost:3306/db1?serverTimezone=Asia/Shanghaijdbc:mysql://localhost:3306/db1?serverTimezone=GMTIdea链接mysql错误Idea链接mysql错误—Goto‘Adv
- 行为识别的方法
人工智能专属驿站
深度学习
行为识别主要有以下几大类方法,每类方法各有特点及典型算法:传统方法特点:利用手工设计特征对行为进行表征,再用统计学习的分类方法进行识别。需一定专业知识设计特征,耗费人力物力,对复杂场景、遮挡等适应性差,但对简单背景、规则动作识别效果尚可。典型算法:时空关键点(Space-TimeInterestPoints):基于视频图像中的关键点在时空维度上的变化来提取动作特征,但可能忽略视频细节,泛化能力较弱
- 【appium】成功解决无法连接到服务器....
keira674
UI自动化服务器运维
现象:remotehost填写了0.0.0.0点击开始会话报错如下无法连接到服务器;您确定它正在运行吗?如果您正在使用浏览器版本,同时也确保您的Appium服务器使用--allow-cors启动。localhost解决:remotehost填写了localhost点击开始会话成功连接
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默