- 混合整数非线性规划的松弛与分解方法
Waiyuet Fung
混合整数非线性规划松弛方法分解技术启发式算法全局优化
背景简介混合整数非线性规划(MINLPs)作为运筹学中的一个重要领域,涉及到优化问题的连续和离散变量混合,在工程设计、生产调度、资源分配等多个领域发挥着关键作用。本书由I.Nowak撰写,旨在深入探讨这一复杂的优化问题及其解决方案。MINLPs基础概念在本书的第一部分,Nowak介绍了MINLPs的基本概念。MINLPs的目标是寻找一组连续和整数变量的最优组合,以最小化或最大化某个非线性目标函数。
- java八股之redis面试题
MinusZXX
八股文-redisjavaredis开发语言面试
目录1、redis是单线程还是多线程2、Redis为什么那么快3、Redis底层数据是如何用跳表来存储的4、RedisKey过期了为什么内存没释放(附删除策略)5、Redis没设置key的过期时间,为什么被Redis主动删除了(淘汰策略)6、Redis主从、哨兵、集群架构优缺点比较7、Redis集群数据分片8、Redis主从切换导致缓存雪崩9、Redis持久化RDB、AOF和混合持久化AOF4.0
- 机器视觉工程师必须知道读码器如何选型
视觉人机器视觉
杂说数码相机3d人工智能c#
一、明确核心需求应用场景工业场景(产线、仓储):需高防护等级(IP65+)、抗震动/冲击、宽温工作(-20℃~50℃)。商业场景(零售、物流):注重扫描速度、多码兼容性(一维/二维码混合)。移动场景(手持设备、AGV):选择无线连接(蓝牙/Wi-Fi)、轻便设计。特殊环境(高粉尘、强光):需配备强光源补偿、高帧率图像传感器。码的类型一维码:传统激光扫描器(成本低)或线性图像式扫描器(破损码容错)。
- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- DeepSeek高能低耗AI创作突破
智能计算研究中心
其他
内容概要随着人工智能技术向垂直领域加速渗透,生成式模型的应用边界正经历革命性拓展。DeepSeek系列产品通过670亿参数混合专家架构,构建起覆盖学术研究、内容创作与编程开发的多模态解决方案。该架构融合视觉语言理解与多语言处理能力,在保持高响应速度的同时,显著降低算力消耗,其单位计算成本仅为同类产品的三分之一。值得关注的是,系统搭载的DeepSeekProver学术引擎可自动生成文献综述框架,而D
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- 基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测
默默科研仔
发动机寿命预测matlab神经网络发动机寿命预测
基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测一、基本原理与优化框架遗传算法(GA)与BP神经网络的结合(GA-BP)主要通过全局搜索优化BP神经网络的初始权值和阈值,解决传统BP易陷入局部最优、收敛速度慢的问题。具体优化形式包括:初始参数优化:GA仅优化初始参数,后续仍依赖BP反向传播微调。全局参数优化:GA直接优化全部网络参数,无需BP参与。混合优化:GA优化初始参数后,再通过B
- 无线数据网关 自动化测控的LoRa-4G混合网络 串口升级、信号扩展 高效物联传输网络
河北稳控科技
自动化网络运维
DLS11无线数据网关自动化测控的LoRa-4G混合网络串口升级、信号扩展高效物联传输网络DLS11是一款专为VSxxx系列采发仪设计的内置电池低功耗数据转发器,支持LoRA和LTE(4G)无线通信。该设备通过“实时在线”的LoRA收发器,能够收集并存储来自其他LoRA设备的数据。随后,DLS11会定时启动,将这些存储的数据重新打包为标准数据包,并通过LTE网络发送至远端服务器。数据发送方式灵活多
- 案例驱动的 IT 团队管理:创新与突破之路:第二章 团队组建:从人才画像到生态构建-2.2.1星型架构 vs 网状架构对比
言析数智
案例驱动的IT团队管理:创新与突破之路IT项目管理星型架构网状架构
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲星型架构vs网状架构:IT团队结构创新的双模选择引言:从网络拓扑到组织设计的范式迁移一、架构解析:技术原理与管理哲学的融合1.1星型架构:中心化控制体系1.2网状架构:分布式协作网络二、对比分析:六维能力评估模型2.1核心能力矩阵2.2适用场景对照三、混合架构创新:数字时代的第三选择3.1蜂巢式结构设计3.2动态平衡机制四、转型路线图:四阶段演进路
- SassScript:Sass中的编程特性详解
QQ828929QQ
sass前端css
Sass(SyntacticallyAwesomeStylesheets)是一种强大的CSS预处理器,它允许开发者使用类似于编程语言的语法来编写CSS,然后通过编译生成标准的CSS代码。SassScript是Sass中的编程特性集合,它包含了变量、嵌套规则、混合、函数以及控制指令等,极大地提高了CSS的开发效率和可维护性。1.变量SassScript中的变量允许开发者在样式表中存储和重复使用值。变
- 混合开发(ionic+cordova+angular)
小黑阿泽
angular.jsgradle前端
相关网址:ionic、cordova、angular三者的关系:https://blog.csdn.net/xiaolinlife/article/details/73548938ionic官网:https://ionicframework.comionic中文网:http://www.ionic.wangcordova中文官网:http://cordova.axuer.com/#getstart
- SassScript:Sass中的编程特性详解
算法探险家
sass前端css
Sass(SyntacticallyAwesomeStylesheets)是一种强大的CSS预处理器,它允许开发者使用类似于编程语言的语法来编写CSS,然后通过编译生成标准的CSS代码。SassScript是Sass中的编程特性集合,它包含了变量、嵌套规则、混合、函数以及控制指令等,极大地提高了CSS的开发效率和可维护性。1.变量SassScript中的变量允许开发者在样式表中存储和重复使用值。变
- 基于 ArkTS 的混合式开发示例:静态页面与本地数据交互
qq_55376032
harmonyos华为鸿蒙
一、实现效果1、H5段混合式开发效果图2、静态页面与本地数据交互效果图二、技术栈分析ArkTS:用于构建页面结构和逻辑,支持声明式UI和组件化开发。WebView:通过@ohos.web.webview调用H5页面,支持JavaScript交互。资源管理:使用@kit.ArkTS的util模块读取并解析本地JSON文件。自定义对话框:通过@CustomDialog实现自定义弹窗,支持动态数据加载。
- 大模型黑书阅读笔记--第一章
53年7月11天
大模型黑书笔记人工智能自然语言处理语言模型
cnn,rnn达到了极限,憋了三十年(这段时间已经有注意力了,并且注意力也加到了cnn,rnn中,但没啥进展)憋来了工业化最先进的transformertransformer的核心概念可以理解为混合词元(token),rnn通过循环函数顺序分析次元,而transformer模型不是顺序分析,而是将每个词元与序列中其他词元关联起来。为突破cnn的极限,注意力的概念出来了:cnn做序列处理时只关注最后
- 高亮动态物体——前景提取与动态物体检测器(opencv实现)
WenJGo
AI学习之路Python之路opencv计算机视觉人工智能深度学习神经网络
目录代码说明1.导入库2.创建背景建模对象3.打开视频源4.逐帧处理视频5.应用背景建模获得前景掩码6.形态学操作去除噪声6.1定义形态学核6.2开运算去除噪点6.3膨胀操作填补前景区域空洞7.轮廓检测识别动态物体8.绘制轮廓和边界框9.显示处理结果10.退出控制与资源释放整体代码效果展示代码说明主要功能是通过背景建模检测视频中的运动目标。其工作流程如下:读取视频帧;利用MOG2算法生成前景掩码;
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- 最新NPU芯片详解及应用场景
美好的事情总会发生
AI嵌入式硬件硬件工程linux人工智能ai
近年来,NPU(神经网络处理器)技术快速发展,各大厂商推出多款高性能AI加速芯片,覆盖从端侧设备到云端数据中心的多样化需求。以下是NPU芯片及其核心特点与应用场景的详细说明:1.苹果M3系列芯片(M3/M3Pro/M3Max)NPU架构:第二代16核神经网络引擎,采用台积电3nm工艺。算力:18TOPS(每秒万亿次操作),较M2提升40%。技术亮点:支持混合精度计算(FP16/INT8),动态分配
- 【go】Go语言设计模式:函数与方法的权衡
还没入门的大菜狗
golang设计模式开发语言
核心提示词:go语言的设计模式是不是都是围绕函数展开的,而不是方法?Go语言设计模式:函数与方法的权衡这个问题很有深度。Go语言的设计模式确实与传统面向对象语言不同,但并不完全是"围绕函数展开",而是展现出一种函数和方法混合使用的平衡风格。Go的设计理念与设计模式Go语言采用了一种实用主义的混合范式:轻量级面向对象:有结构体和方法,但没有类继承函数式编程特性:函数是一等公民,支持闭包组合优于继承:
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- 基于多向量检索器的多模态RAG实现:用于表格、文本和图像
lichunericli
人工智能自然语言处理
原文地址:Multi-VectorRetrieverforRAGontables,text,andimages2023年10月20日概括跨不同数据类型(图像、文本、表格)的无缝问答是RAG追求的目标之一。我们将发布threenewcookbooks,展示在包含混合内容类型的文档上使用RAG的多向量检索器。这些cookbooks还提出了一些将多模态LLM与多向量检索器配对以解锁图像上的RAG的想法。
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- 书籍-《深度生成模型(第二版)》
书籍:DeepGenerativeModeling作者:JakubM.Tomczak出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《深度生成模型(第二版)》01书籍介绍本书是关于生成式AI背后模型的第一本全面著作,经过彻底修订,涵盖了所有主要类别的深度生成模型,包括混合模型、概率电路、自回归模型、基于流的模型、潜在变量模型、生成对抗网络(GANs)、混合模型、基于得分的
- 【CSS】background-position属性详解
Peter-Lu
#CSScss前端node.jshtmljavascript
文章目录一、background-position属性概述1.属性介绍2.属性的取值3.属性的默认值二、background-position的基本用法1.使用关键字2.使用百分比3.使用像素值4.混合使用关键字与百分比/像素值三、background-position属性详解1.关键字定位2.百分比定位3.长度值定位四、background-position的实际应用场景1.背景图像居中显示2.
- 少样本数值型数据集 | 数据增强
蒜蓉趣多多
机器学习人工智能材料工程
对于小样本数字型数据集,数据增强的有效方法主要集中在创造新的样本、调整现有样本的特征、或者通过生成模型来模拟真实分布。下面是个人搜集到的方法及部分代码。希望对大家的科研/工作有所帮助!1.噪声注入(NoiseInjection)方法:在原始数据上添加少量的随机噪声,生成新的样本。噪声可以是高斯噪声、均匀分布噪声或其他分布的噪声。实现:对于每个特征,可以加上一个服从小均值和小方差的正态分布噪声,如X
- 当通用智能遇到深度推理:如何正确驾驭DeepSeek-V3与R1?
涛涛讲AI
大模型大模型智能体扣子deepseek
欢迎来到涛涛聊AI。2025年,中国AI公司DeepSeek凭借两款大模型——通用型V3与推理型R1,在技术圈掀起巨浪。这两款模型看似师出同门,却在能力边界与应用场景上存在显著差异。本文将从技术本质、适用场景与实操技巧三个维度,剖析它们的差异与使用策略。一、定位差异:全能选手vs解题专家DeepSeek-V3:高性价比的“多面手”V3的核心目标是平衡性能与成本。它采用混合专家架构(MoE),参数规
- 【虚幻C++笔记】TArray,TMap,TSet容器
OSwich
虚幻C++笔记虚幻c++笔记
目录TArrayTMapTSetTArrayTArray是虚幻c++中的动态数组,TArray特点:速度快,内存消耗小,安全性高。并且TArray所有元素均完全为相同类型,不能进行不同元素类型的混合//构造TArrayarr={1,2,3,4,5,6,7};//Add和Push类似,但是将元素复制或移动到数组中,而Emplace//则使用给定参数构建元素类型的新实例;通常来说,Emplace的效率
- Solana
倒霉男孩
Solana区块链web3
文章目录概要Solana的核心技术特点1.历史证明(ProofofHistory,PoH)2.混合共识机制3.低费用模型4.开发者生态5.存储模式Solanavs其他主流链的关键区别1.性能对比2.开发模型对比3.去中心化与安全性4.生态应用方向三、Solana的优缺点总结优势劣势概要Solana是近年来快速崛起的高性能区块链平台,其核心设计目标是通过技术创新突破传统区块链的性能瓶颈(如以太坊的低
- YOLO11改进-模块-引入CMUNeXt Block 增强全局信息
一勺汤
YOLOv11模型改进系列网络YOLO目标检测模块魔改YOLOv11YOLOV11模型改进
在医学图像分割领域面临诸多问题,如U形架构卷积网络难以提取全局信息,混合架构因计算资源受限在实际医疗场景应用受阻,轻量化网络在保证性能与提取全局信息上存在矛盾。因此,设计了CMUNeXtBlock,CMUNeXtBlock采用大核深度可分离卷积替代普通卷积来提取全局信息,凭借深度可分离卷积减少参数和计算成本以维持轻量化,同时综合利用卷积归纳偏置和全局信息提取能力,有效解决了这些问题。代码:http
- 大模型巅峰对决:DeepSeek vs GPT-4/Claude/PaLM-2 全面对比与核心差异揭秘
accurater
机器学习科技人工智能
喜欢可以到主页订阅专栏目录技术架构对比性能表现与基准测试多模态与多语言能力推理效率与成本分析开源生态与行业适配应用场景与案例研究未来发展与技术趋势代码实现与调用示例1.技术架构对比DeepSeek:动态稀疏激活的混合专家系统(MoE)动态路由机制:每个输入仅激活约5.5%的参数(如6710亿参数中激活370亿),显著降低计算能耗40%。模块化设计:支持金融、医疗等领域的即插即用式微调,行业适配能力
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts