ThreadLocal
属于java.lang,提供线程局部变量,用来处理多线程并发的。
使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本。
因此每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。
机制:
每个线程有一个自己的 ThreadLocalMap 对象
每一个 ThreadLocal 对象有一个创建时生成唯一的 Id
访问一个 ThreadLocal 变量的值,就是用这个唯一 Id 去 本线程 的 ThreadLocalMap 中查找对应的值
**简单具体点说,ThreadLocal类中有一个Map,用于存储每一个线程的变量副本,Map中元素的键为线程对象,而值对应线程的变量副本,由于Key值不可重复,每一个“线程对象”对应线程的“变量副本”,而到达了线程安全。
**
源码解析:
package java.lang;
import java.lang.ref.*;
import java.util.concurrent.atomic.AtomicInteger;
public class ThreadLocal {
private final int threadLocalHashCode = nextHashCode();
//从0开始,原子更新下一个,
private static AtomicInteger nextHashCode =
new AtomicInteger();
//hash code 从 0 开始不断累加 0x61c88647 生成的。0x61c88647,目的为了让 hash code 能更好地分布在尺寸为 2 的 N 次方的数组里
private static final int HASH_INCREMENT = 0x61c88647;
//返回下个HashCode
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
//返回当前线程初始值作为当前ThreadLocal变量,返回null
protected T initialValue() {
return null;
}
public ThreadLocal() {
}
//返回ThreadLocal变量在当前线程副本的值。如果该变量在当前线程中没有值,返回初始化的值。T泛型
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);//得到map的实体
if (e != null)
return (T)e.value;
}
return setInitialValue();
}
//设置成初始值,并返回。
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
//设置成特定的值value
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
//移除当前线程中的threadLocal
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);
}
//获取线程t的ThreadLocalMap;
//在Thread类中有属性,也就是线程附属的一个ThreadLocalMap threadLocals:
//ThreadLocal.ThreadLocalMap threadLocals = null;
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
//创建线程的threadLocals
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
//静态方法,创建继承于父线程的ThreadLocalMap
static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
return new ThreadLocalMap(parentMap);
}
//一种嵌入式的替代吧,在子类中已经重新定义。在这里定义是为了提供createInheritedMap的工厂方法而不需在InheritableThreadLocal再子类化map class。
T childValue(T parentValue) {
throw new UnsupportedOperationException();
}
//内部类ThreadLocalMap,哈希map来维护线程局部变量。没有操作暴露在ThreadLocal类之外。
//访问权限为package private 的内部类,因此可以在 Thread 类中引用(都是 java.lang 包下的)
//哈希表实体用WeakReferences作为key,来维持大而长时间的使用。
static class ThreadLocalMap {
//泛型T 是 ThreadLocal
static class Entry extends WeakReference {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal k, Object v) {
super(k);
value = v;
}
}
//初始容量,必须是2的幂
private static final int INITIAL_CAPACITY = 16;
private Entry[] table;
private int size = 0;
//要调整的阈
private int threshold; // Default to 0
//设置阈 最少 len * 2 / 3
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
// i自增 (模 len):加1操作,下一个索引
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
//i自减 (模 len):减1操作,上一个索引
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
//构造包含(firstKey, firstValue)的Map,懒惰构造,仅当至少有entry扔进的时候创建。
ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
//带参parentMap构造函数(与父线程有关),只允许createInheritedMap调用。
private ThreadLocalMap(ThreadLocalMap parentMap) {
Entry[] parentTable = parentMap.table;
int len = parentTable.length;
setThreshold(len);
table = new Entry[len];
for (int j = 0; j < len; j++) {
Entry e = parentTable[j];
if (e != null) {
ThreadLocal key = e.get();
if (key != null) {
Object value = key.childValue(e.value);
Entry c = new Entry(key, value);
int h = key.threadLocalHashCode & (len - 1);
while (table[h] != null)
h = nextIndex(h, len);
table[h] = c;
size++;
}
}
}
}
//返回该key关联的Entry。直接命中或者getEntryAfterMiss()
private Entry getEntry(ThreadLocal key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
//未直接命中,便使用该方法找Entry。
private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
//设置该key关联的value。
private void set(ThreadLocal key, Object value) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
//移除该key关联的Entry
private void remove(ThreadLocal key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
e.clear();
expungeStaleEntry(i);
return;
}
}
}
//替换
private void replaceStaleEntry(ThreadLocal key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
//往回找stale entry
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal k = e.get();
if (k == key) {
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// 如果前面存在stale entry ,那么从它开始删。
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);//clean
return;
}
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// key没找到, 放new entry 在stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);//clean
}
//通过重散列在staleSlot和下一个为空的slot之间的所有可能冲突的项目,删除stale entry。
//这个操作其实删除了其他在后一个null之前的stale entries.
//返回下一个为空的index
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// 清除staleSlot位置的entry,也就是置为null,size减1
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal k = e.get();
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
int h = k.threadLocalHashCode & (len - 1);//重散列
if (h != i) {
tab[i] = null;
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
//remove,从i下一个开始,n是scan控制,log2(n)个cells被查询, 有stale entry情况。
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
n = len;
removed = true;
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0); //无符号右移一位
return removed; // 有remove的就会返回true
}
//显示移除stale entries,如果size >= threshold - threshold / 4,则resize()
private void rehash() {
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis(迟滞现象)
if (size >= threshold - threshold / 4)
resize();
}
//二倍扩容。
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
if (e != null) {
ThreadLocal k = e.get();
if (k == null) {
e.value = null; // Help the GC
} else {
int h = k.threadLocalHashCode & (newLen - 1);
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
setThreshold(newLen);
size = count;
table = newTab;
}
//删除过期的entries:e.get() == null
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
}
}
说明:
1.0x61c88647:数学中的神秘数字,神奇至极啊
This number represents the golden ratio (sqrt(5)-1) times two to the power of 31. The result is then a golden number, either 2654435769 or -1640531527.
2.示例1:私有静态 ThreadLocal
实例(serialNum
)为调用该类的静态 SerialNum.get()
方法的每个线程维护了一个“序列号”,该方法将返回当前线程的序列号。(线程的序列号是在第一次调用 SerialNum.get()
时分配的,并在后续调用中不会更改。)
public class ThreadLocalTest1 {
private static int nextSerialNum = 0; //静态变量
private static ThreadLocal serialNum = new ThreadLocal() {
protected synchronized Object initialValue() { // 同步方法
return new Integer(nextSerialNum++);
}
};
public static int get() {
return ((Integer) (serialNum.get())).intValue();
}}
3.示例2:在线程类内部创建ThreadLocal :线程 隔离
(1)、在多线程的类(如ThreadDemo类)中,创建一个ThreadLocal对象threadXxx,用来保存线程间需要隔离处理的对象xxx。
(2)、在ThreadDemo类中,创建一个获取要隔离访问的数据的方法getXxx(),在方法中判断,若ThreadLocal对象为null时候,应该new()一个隔离访问类型的对象,并强制转换为要应用的类型。
(3)、在ThreadDemo类的run()方法中,通过调用getXxx()方法获取要操作的数据,这样可以保证每个线程对应一个数据对象,在任何时刻都操作的是这个对象。
代码参考下面的第二个网址。
4 示例 线程安全
public class ConnectionManager {
private static ThreadLocal connectionHolder = new ThreadLocal() {
@Override
protected Connection initialValue() {
Connection conn = null;
try {
conn = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/test", "username",
"password");
} catch (SQLException e) {
e.printStackTrace();
}
return conn;
}
};
public static Connection getConnection() {
return connectionHolder.get();
}
public static void setConnection(Connection conn) {
connectionHolder.set(conn);
} }
参考:
http://www.tuicool.com/articles/2QjEzm
http://blog.csdn.net/vking_wang/article/details/14225379