- Python爬虫实战:研究MarkupSafe库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言MarkupSafe
1.引言1.1研究背景与意义随着互联网数据量的爆炸式增长,网页内容自动提取与分析技术在信息检索、舆情监控、数据挖掘等领域的需求日益凸显。网络爬虫作为获取网页内容的核心工具,能够自动化采集互联网信息。然而,直接渲染爬取的网页内容存在安全隐患,特别是跨站脚本攻击(XSS)风险。攻击者可能通过注入恶意脚本窃取用户信息或破坏网站功能。MarkupSafe作为Python的安全字符串处理库,能够有效处理不可
- 信息检索简介——文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2005年8月17日至9月3日在美国加利福尼亚州伯克莱纳举行了SIGIR国际会议(中文全称“计算机信息retrieval国际会议”),这是信息检索领域的顶级会议之一。该会议由ACM主办,主题涵盖了包括文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等多个热门方向。此次会议是第一次将信息检索作为一个学科,并取得重大突破。本文试图对SIGIR进行一个完整的介绍,阐述
- 22种创新思路!今年必将是特征选择爆发的一年
小唯啊小唯
人工智能注意力机制特征选择
2025深度学习发论文&模型涨点之——特征选择特征选择是机器学习和数据挖掘领域中一个非常重要的步骤。它指的是从原始特征集合中挑选出对目标变量有较强预测能力的特征子集。在实际的数据集中,往往包含众多特征,但并非所有特征都对模型的性能有正面影响。例如在房价预测任务中,原始特征可能包括房屋的面积、房间数量、所在小区、周边配套设施等众多内容。通过特征选择,可以剔除一些无关的或者冗余的特征,比如可能存在的重
- 【数据挖掘】分类算法学习—ID3
会的全对٩(ˊᗜˋ*)و
数据挖掘数据挖掘分类学习经验分享ID3
分类算法学习—ID3ID3(IterativeDichotomiser3)是一种经典的决策树学习算法,由RossQuinlan于1986年提出,主要用于处理离散特征的分类问题。其核心思想是通过信息增益选择最优特征进行节点分裂,递归构建决策树。要求:理解并掌握ID3算法,理解算法的原理,能够实现算法,并对给定的数据集进行分类,分析个人参股的情况代码实现:importpandasaspdimportn
- 四个机器学习模型对比道路裂缝检测识别分类模型
深度学习乐园
深度学习实战项目机器学习分类人工智能
完整源码项目包获取→点击文章末尾名片!一、课题综述1.1.课题简介在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景也各不相同。1.2.课题目标(示例)本课题使用的数据集来自于数据分析与数据挖掘竞赛Kaggle,该竞赛为数据科学领域著名的国际性赛事之一。课题使用的数据集为带标签的图像数据集,包含带有裂痕和不带有裂痕的桥梁、墙和人行道图片。课题的目标为对于目标数据集,搭建相应的传统机器
- Python 数据挖掘实战: 关联规则与聚类分析,解锁数据价值的钥匙
清水白石008
pythonPython题库python数据挖掘动画
Python数据挖掘实战:关联规则与聚类分析,解锁数据价值的钥匙引言在数字化浪潮席卷全球的今天,数据已成为企业和组织最重要的战略资产。海量数据蕴藏着巨大的价值,等待我们去挖掘和发现。数据挖掘(DataMining),作为从海量数据中提取有价值知识和模式的关键技术,正日益受到各行各业的重视。它如同探矿者的火眼金睛,能够穿透数据的迷雾,发现隐藏在背后的规律和趋势,为商业决策、科学研究和社会发展提供强有
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Python web框架FastAPI——一个比Flask和Tornada更高性能的API 框架
Python进阶者
中间件pythonwebhttpdocker
点击上方“Python爬虫与数据挖掘”,进行关注回复“书籍”即可获赠Python从入门到进阶共10本电子书今日鸡汤借问酒家何处有,牧童遥指杏花村。0前言前几天给大家分别分享了(入门篇)简析Pythonweb框架FastAPI——一个比Flask和Tornada更高性能的API框架和(进阶篇)Pythonweb框架FastAPI——一个比Flask和Tornada更高性能的API框架。今天欢迎大家来
- 【Python报错】成功解决error: subprocess-exited-with-error:安装lxml模块不再报错
云天徽上
python运行报错解决记录python开发语言lxml
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 揭秘互联网大数据求职面试:从Zookeeper到数据挖掘
小葛呀
大数据面试宝典互联网大数据ZookeeperYarnRedisKafkaHDFS
场景:互联网大数据求职者面试角色介绍:面试官老黑:严肃而专业,技术深入,擅长引导候选人展示自己。程序员小白:搞笑且略显紧张,对基础问题能应付自如,但面对复杂问题时经常词穷。第一轮提问:老黑:"小白,你对Zookeeper的理解是什么?它在分布式系统中扮演什么角色?"小白:"Zookeeper...是个协调者,负责管理配置和同步数据...就像一个团队的协调员,确保每个节点都知道该做什么。"老黑:"没
- 在大数据求职面试中如何回答分布式协调与数据挖掘问题
在大数据求职面试中如何回答分布式协调与数据挖掘问题场景:小白的大数据求职面试小白是一名初出茅庐的程序员,今天他来到一家知名互联网公司的面试现场,面试官是经验丰富的老黑。以下是他们之间的对话:第一轮提问:分布式与数据采集老黑:小白,你对Zookeeper有了解吗?小白:当然,Zookeeper是一个分布式协调服务,主要用于分布式应用程序中的同步服务、命名服务和配置管理。老黑:不错,你能说说Flume
- 另类数据挖掘:如何用网络搜索数据预测上市公司业绩?
量化价值投资入门到精通
数据挖掘人工智能ai
另类数据挖掘:如何用网络搜索数据预测上市公司业绩?关键词:另类数据、网络搜索数据、业绩预测、文本挖掘、机器学习、量化投资、自然语言处理摘要:本文探讨了如何利用网络搜索数据这一另类数据源来预测上市公司业绩。我们将从理论基础出发,详细分析搜索数据与公司业绩之间的关联机制,介绍完整的数据采集、处理和分析流程,并通过实际案例展示如何构建预测模型。文章还将讨论该方法的局限性、实际应用场景以及未来发展方向,为
- 解锁数据宝藏:数据挖掘之数据预处理全解析
奔跑吧邓邓子
必备核心技能数据挖掘数据预处理机器学习
目录一、引言:数据预处理——数据挖掘的基石二、数据预处理的重要性2.1现实数据的问题剖析2.2数据预处理的关键作用三、数据预处理的核心方法3.1数据清洗3.1.1缺失值处理3.1.2离群点处理3.1.3噪声处理3.2数据集成3.2.1实体识别3.2.2冗余处理3.2.3数据值冲突处理3.3数据变换3.3.1平滑处理3.3.2聚合操作3.3.3离散化3.3.4归一化四、数据预处理的实践流程4.1数据
- 数据挖掘助力AI人工智能提升竞争力
AI大模型应用工坊
人工智能数据挖掘ai
数据挖掘助力AI人工智能提升竞争力关键词:数据挖掘、AI人工智能、竞争力提升、数据处理、算法应用摘要:本文深入探讨了数据挖掘如何助力AI人工智能提升竞争力。首先介绍了数据挖掘与AI的背景知识,包括目的、预期读者、文档结构和相关术语。接着阐述了数据挖掘和AI的核心概念及联系,详细讲解了核心算法原理和具体操作步骤,并辅以Python代码。随后分析了相关的数学模型和公式,通过具体例子加深理解。在项目实战
- NLPIR智能语义:大数据精准挖掘是信息化发展趋势
weixin_33778544
大数据数据库人工智能
随着信息技术的高速发展、数据库管理系统的广泛应用,人们积累的数据量急剧增长,大量的信息给人们带来方便的同时,也带来了诸如:信息过量难以消化,信息真假难以辨识,信息安全难以保证,信息形式不一致难以统一处理等问题。如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。数据挖掘就是对观测到的数据集进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- 解锁决策树:数据挖掘的智慧引擎
目录一、决策树:数据挖掘的基石二、决策树原理剖析2.1决策树的基本结构2.2决策树的构建流程2.2.1特征选择2.2.2数据集划分2.2.3递归构建三、决策树的实践应用3.1数据准备3.2模型构建与训练3.3模型评估四、决策树的优化策略4.1剪枝策略4.1.1预剪枝4.1.2后剪枝4.2集成学习五、案例分析5.1医疗诊断案例5.2金融风险评估案例六、总结与展望一、决策树:数据挖掘的基石在当今数字化
- Python爬虫实战:研究concurrent.futures相关技术
ylfhpy
爬虫项目实战python爬虫开发语言phpmr
一、引言1.1研究背景与意义随着互联网的迅速发展,网络上的信息量呈爆炸式增长。网络爬虫作为一种自动获取网页内容的技术,在搜索引擎、数据挖掘、舆情分析等领域有着广泛的应用。然而,面对海量的网页资源,传统的单线程爬虫效率低下,无法满足实际需求。因此,开发高效的并发爬虫系统具有重要的现实意义。1.2国内外研究现状国外在网络爬虫领域的研究起步较早,技术相对成熟。例如,Google的爬虫系统能够在短时间内抓
- Python爬虫实战:研究threading相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlscrapy
1.引言1.1研究背景与意义随着互联网的快速发展,网页数据量呈爆炸式增长。网络爬虫作为一种自动获取网页内容的工具,在搜索引擎优化、数据挖掘、舆情分析等领域具有广泛应用。传统的单线程爬虫在面对大规模数据采集任务时效率低下,无法充分利用多核CPU资源。多线程技术可以显著提高爬虫的并发处理能力,加快数据采集速度。1.2国内外研究现状国外在网络爬虫领域起步较早,Google、Bing等搜索引擎公司拥有大规
- 如何运用 AI 工具运营海外社媒账号
引量AI
人工智能大数据海外社媒tiktok矩阵矩阵
在全球化与数字化深度融合的当下,海外社交媒体成为企业拓展国际市场、塑造品牌形象的关键平台。借助AI工具能显著提升海外社媒账号运营效率与效果,特别是在构建和运营TikTok矩阵等方面,AI的赋能作用不容小觑。下面我们就来详细探讨如何应用AI工具运营海外社媒账号。一、借助AI进行精准市场分析与账号定位剖析海外市场需求AI工具凭借强大的数据挖掘和分析能力,可深入剖析海外不同地区、不同文化背景下用户的兴趣
- 微博商业数据挖掘方法
社会我857
程序员杂志-大数据技术深度实践
本文主要介绍微博商业数据挖掘的体系及方法,但并不注重模型和算法这些细节,而是阐述数据如何贴近、支持和引导业务,如何建立合理的评价体系,以及如何围绕这两点建设数据挖掘架构。业务及产品微博广告生态的复杂程度在业界数一数二。由于微博本身的开放性,微博广告客户天生就有如下多样性:类型电商类型:投放方式大多比较传统,投放目标主要是注册或购买;App类型:投放目标主要是App下载或者用户唤醒;O2O:投放目标
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- Turkey HSD检验法/W法
weixin_30746117
pythonr语言matlab
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share医药统计项目联系QQ:231469242python2.7#-*-cod
- python中Scikit-learn模块介绍
不会仰游的河马君
pythonpythonscikit-learn开发语言
Scikit-learn是Python中一个开源的机器学习库,它提供了简单高效的工具,用于数据挖掘和数据分析。该库包含了各种分类、回归、聚类算法,以及数据预处理、模型选择、模型评估等功能。Scikit-learn的特点是接口统一、使用简单、运行高效,并且有一个活跃的社区不断维护和更新。它广泛应用于数据科学、机器学习、人工智能等领域。应用和发展趋势Scikit-learn在机器学习和数据科学领域的应
- Python爬虫实战:模拟登录微博 – 通过POST请求获取Cookie
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言seleniumbeautifulsoup
1.引言在现代的互联网应用中,爬虫技术作为数据收集的重要手段,广泛应用于社交媒体、电商平台、新闻网站等各种领域。社交媒体平台,特别是微博,作为中国最受欢迎的社交网站之一,聚集了海量的用户数据和内容。通过爬取微博数据,开发者可以获取到大量的用户信息、热门话题、微博动态等数据,对分析社交趋势、舆情监测、数据挖掘等具有重要意义。在这篇博客中,我们将通过模拟登录微博的方式,爬取需要登录后才能访问的微博数据
- 数据挖掘与机器学习 期末复习整理
无敌摸鱼高手
数据挖掘与机器学习数据挖掘机器学习人工智能期末复习知识总结
1.分类:–有类别标记信息,因此是一种监督学习–根据训练样本获得分类器,然后把每个数据归结到某个已知的类,进而也可以预测未来数据的归类。2.聚类:–无类别标记,因此是一种无监督学习–无类别标记样本,根据信息相似度原则进行聚类,通过聚类,人们能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间的关系3.聚类方法:划分方法-(分割类型)K-均值K-Means顺序领导者方法基于模型的方法
- 简历模板1——王明 | 高级数据挖掘工程师 | 5年经验
XiaoQiong.Zhang
数据挖掘人工智能
王明|高级数据挖掘工程师|5年经验(+86)189-xxxx-xxxx|
[email protected]|深圳市GitHub|LinkedIn工作经历科技前沿集团|高级数据挖掘工程师2021.06-至今核心贡献:主导建立公司AI中台,整合10+业务线数据资源,支撑日均5亿+数据处理研发自适应特征工程框架,特征生成效率提升3倍,减少人工特征工程工作量70%设计模型健康监测系统,关键业务模型异常响
- 线性代数导引:附录:行列式几何解释
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。在计算机科学中,线性代数被广泛应用于图形学、机器学习、数据挖掘等领域。行列式是线性代数中的一个重要概念,它可以用来求解线性方程组的解、计算矩阵的逆、判断矩阵是否可逆等问题。本文将介绍行列式的几何解释,帮助读者更好地理解行列式的概念和应用。2.核心概念与联系2.1向量的叉积向量的叉积是指两个向量的乘积得到的另一个向量。设向量$
- 爬虫技术:数据挖掘的深度探索与实践应用
代码老y
爬虫数据挖掘人工智能python
一、爬虫技术的深度应用爬虫技术的应用范围非常广泛,从简单的网页数据抓取到复杂的多源数据整合,爬虫技术都能发挥重要作用。以下是一些常见的深度应用场景:(一)多源数据整合在许多情况下,单一数据源往往无法满足我们的需求。例如,在进行市场研究时,可能需要从多个电商平台、社交媒体平台和新闻网站获取数据。爬虫技术可以同时从多个数据源抓取数据,并将这些数据进行整合和分析,从而提供更全面的市场洞察。(二)数据实时
- mysql查询每种产品的销售总额_MDX示例:统计各产品每个季度的销售排名
爱喝冰红茶
ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4销售额排名销售额排名销售额排名销售额排名产品130002200035000140ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟