- vscode--工作区和相对路径
一头大学牲
程序--编程记录vscodeide编辑器
vscode的相对路径使用vscode编辑python项目时发现,它的相对路径是相对于当前工作根目录来定位的,也就是从工作文件夹的最顶级目录开始查找,而非是从当前执行文件开始查找。例子:根目录:F:\deep-learning-for-image-processing执行文件路径:F:\deep-learning-for-image-processing\pytorch_classificatio
- DDA3020 Machine Learning
后端
DDA3020Homework1Duedate:March09,2025Instructions•Thedeadlineis23:59,March09,2025.•Theweightofthisassignmentinthefinalgradeis20%.•Electronicsubmission:TurninsolutionselectronicallyviaBlackboard.Besuret
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- 【Linux】learning notes(4)cat、more、less、head、tail、vi、vim
bryant_meng
ServerConfig/Toolslinuxlessvimtailmore
文章目录catmore查看整个文件less查看整个文件head查看部分文件tail查看部分文件vim/vicatcat命令在Linux和Unix系统中非常常用,它用于连接文件并打印到标准输出设备(通常是屏幕)。虽然cat的基本用法很简单,但它也支持一些参数来提供额外的功能。-n或--number:对所有输出的行进行编号。示例:cat-nfile.txt这会显示file.txt的内容,并在每行的开头
- 了解状态机
Mcband
java
前言状态机(StateMachine)是一种数学模型,用于描述系统或程序在不同状态之间转换的行为。它由一组状态、转移条件和动作组成。一、什么是状态机?状态机可以被看作是一个抽象的机器,它可以处于不同的状态,并根据输入条件执行相应的动作来改变状态。状态表示了系统或程序所处的特定情况或阶段,而转移条件决定了在何种条件下从一个状态转移到另一个状态,动作则表示在状态转移时要执行的操作。二、状态机的实例一个
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- php后端分页_thinkphp5框架前后端分离项目实现分页功能的方法分析
淡定男
php后端分页
本文实例讲述了thinkphp5框架前后端分离项目实现分页功能的方法。分享给大家供大家参考,具体如下:方法一利用tp5提供的paginate方法实现自动分页参数page第几页,paginate分页方法会自动获取size每页数量代码/***Notes:消费记录*Date:2019/6/25*Time:15:43*@paramRequest$request*@return\think\response
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- TidyBot++:用于机器人学习开源的完整移动机械手
三谷秋水
计算机视觉智能体人工智能机器人开源人工智能机器学习深度学习
24年12月来自普林斯顿、斯坦福和dexterity.ai的论文“TidyBot++:AnOpen-SourceHolonomicMobileManipulatorforRobotLearning”。要充分利用模仿学习在移动机械操作方面的最新进展,需要收集大量人工引导的演示。本文提出一种开源设计,用于设计一种廉价、坚固、灵活的移动机械手,该机械手可支撑任意臂,从而实现各种现实世界的家用移动机械操作
- TPAMI 2024 | 学习人类教育智慧:以学生为中心的知识蒸馏方法
小白学视觉
论文解读IEEETPAMI知识蒸馏TPAMI论文解读深度学习
题目:LearningFromHumanEducationalWisdom:AStudent-CenteredKnowledgeDistillationMethod学习人类教育智慧:以学生为中心的知识蒸馏方法作者:S.Yang;J.Yang;M.Zhou;Z.Huang;W.-S.Zheng;X.Yang;J.Ren摘要现有的知识蒸馏研究通常侧重于以教师为中心的方法,其中教师网络根据自身标准进行训
- Manus开源平替-开源通用智能体
galileo2016
人工智能
原文链接:https://i68.ltd/notes/posts/250306-opensource-agi-agent/OWL-比Manus还强的全能开源AgentOWL:OptimizedWorkforceLearningforGeneralMulti-AgentAssistanceinReal-WorldTaskAutomation,现实世界中执行自动化任务的通用多代理辅助优化学习框架项目仓
- llm数据存储基础设施
galileo2016
人工智能
链接:https://i68.ltd/notes/posts/20250310-llm-db/infinity专为LLM应用程序构建的AI原生数据库,可提供对密集向量、稀疏向量、张量(多向量)和全文的快速混合搜索项目仓库:https://github.com/infiniflow/infinity关键特性令人难以置信的快在百万级矢量数据集上实现0.1毫秒查询延迟和15K+QPS在33M文档的全文搜
- 训练模型时,步长为什么不能太大也不能太小?
yuanpan
人工智能
在训练模型时,步长(也称为学习率,LearningRate)是一个关键的超参数,它控制着每次参数更新的大小。步长既不能太大,也不能太小,原因如下:1.步长太大的问题如果步长过大,会导致以下问题:模型发散(Divergence):参数更新幅度过大,可能导致损失函数的值不断增大,甚至无法收敛,模型性能急剧下降。错过最优解:过大的步长可能导致参数在最优解附近震荡,甚至直接跳过最优解,无法找到良好的模型参
- KVM安全模块生产环境配置与优化指南
TechStack 创行者
#服务器容器Linux服务器运维安全kvmSELinux
KVM安全模块生产环境配置与优化指南一、引言在当今复杂多变的网络安全环境下,生产环境中KVM(Kernel-basedVirtualMachine)的安全配置显得尤为重要。本指南旨在详细阐述KVM安全模块的配置方法,结合强制访问控制(MAC)、硬件隔离及合规性要求,为您提供全面且深入的操作建议,确保KVM环境的安全性和稳定性。二、SELinux安全模块配置1.基础策略配置SELinux(Secur
- 数据架构与机器学习:如何构建智能系统
AI天才研究院
AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习(MachineLearning)是一种使计算机程序在未被明确编程的情况下,通过经验的学习自动改善其行为的技术。机器学习的目标是使计算机能够自主地从数据中学习,以便在未来的问题中做出更好的决策。数据架构(DataArchitecture)是一种用于有效管理、存储和处理数据的系统结构和组件。数据架构涉及到数据的收集、存储、处理和分析,以及数据的存储和传输。数据架构是构建智能系统的
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.06.25-2024.07.01
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习自然语言处理大语言模型LLM
文章目录~1.AutoCherry-Picker:LearningfromHigh-qualityGenerativeDataDrivenbyLanguage2.BioMNER:ADatasetforBiomedicalMethodEntityRecognition3.BESTOW:EfficientandStreamableSpeechLanguageModelwiththeBestofTwoW
- 梯度下降法以及随机梯度下降法
HKkuaidou
人工智能深度学习pythonpytorch
梯度下降法就是在更新weight的时候,向函数值下降的最快方向进行更新,具体的原理我就不再写了,就是一个求偏导的过程,有高数基础的都能够很快的理解过程。我在我的github里面会一直更新自己学习pytorch的过程,地址为:https://github.com/00paning/Pytorch_Learning这里我直接展示一个简易实现的python代码,我们还是先看一下运行的效果图:相关pyth
- Python实现机器学习项目教程:房价预测
向着开发进攻
pythonpython机器学习开发语言
Python实现机器学习小项目教程:房价预测案例机器学习(MachineLearning)是数据科学中的一项重要技术,它通过从数据中学习规律,进行预测和决策。对于初学者来说,通过实际的项目来学习机器学习的原理和实现方法,是非常有效的。本篇教程将通过Python实现一个简单的机器学习小项目——房价预测。我们将使用scikit-learn库来构建并训练一个线性回归模型,预测房价。项目背景假设我们拥有一
- JVM 如何保证 Java 程序的安全性?
冰糖心书房
JVM2025Java面试系列jvmjava
JVM(JavaVirtualMachine)在设计时就考虑了安全性,它提供了一套多层次的安全机制,以保护系统免受恶意代码的侵害。这些机制主要包括:1.类加载器(ClassLoader)及双亲委派模型:类加载器的作用:负责加载Java类(.class文件)到JVM中。将类的字节码转换为内存中的Class对象。执行类的初始化。类加载器的类型:启动类加载器(BootstrapClassLoader):
- 买瓜 第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 A 组
Geometry Fu
蓝桥杯蓝桥杯c语言c++
买瓜题目来源第十四届蓝桥杯大赛软件赛省赛C/C++大学A组原题链接蓝桥杯买瓜https://www.lanqiao.cn/problems/3505/learning/问题描述题目描述小蓝正在一个瓜摊上买瓜。瓜摊上共有nnn个瓜,每个瓜的重量为AiA_iAi。小蓝刀功了得,他可以把任何瓜劈成完全等重的两份,不过每个瓜只能劈一刀。小蓝希望买到的瓜的重量的和恰好为mmm。请问小蓝至少要劈多少个瓜才能买
- 异或和之和 第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 A 组
Geometry Fu
蓝桥杯蓝桥杯c语言c++
异或和之和题目来源第十四届蓝桥杯大赛软件赛省赛C/C++大学A组原题链接蓝桥杯异或和之和https://www.lanqiao.cn/problems/3507/learning/问题描述问题分析要点1:异或运算概念异或(ExclusiveOR,简称XOR)是一种数学运算符,常用于逻辑运算与计算机中的位运算。当且仅当两个输入值不同时,异或运算输出为真(1),否则输出为假(0),即“同为0,异为1”
- 2.5 Spring Boot异常处理全局化:@ControllerAdvice实战
Sendingab
Springboot从入门到精通零基础7天精通SpringBootspringboot后端java
SpringBoot全局异常处理:@ControllerAdvice深度解析一、异常处理机制全景图1.1SpringMVC异常处理流程mermaidgraphTDA[客户端请求]-->B[DispatcherServlet]B-->C{Controller处理}C-->|正常|D[返回数据]C-->|异常|E[ExceptionHandlerResolver]E-->F[查找@ExceptionH
- AI界“打工人”革命!开源神器OWL如何让普通人零门槛拥有Manus级生产力?
遇见小码
AI棱镜实验室人工智能开源github低代码AIGC
当动辄上万元的Manus邀请码成为科技圈“奢侈品”时,一群开发者仅用0天复刻出功能媲美的开源方案——OWL项目,并一举拿下GAIA基准测试开源框架第一(58.18分)OWL是什么?OWL(OptimizedWorkforceLearning)是由CAMEL-AI团队打造的多智能体协作框架。它通过AI智能体动态分工协作,像人类团队一样完成复杂任务:无需编码:输入需求即可自动拆解步骤全能助手:能操作浏
- 深入解析Java虚拟机(JVM):架构、内存管理与性能优化
EvLast
jvmjava职场和发展性能优化
##引言Java虚拟机(JavaVirtualMachine,JVM)是Java生态系统的核心引擎,它不仅实现了"一次编写,到处运行"的跨平台承诺,更通过自动内存管理、即时编译等机制深刻影响着现代软件开发。截至2023年,全球超过90%的《财富》500强企业使用基于JVM的技术栈,其重要性可见一斑。##一、JVM核心架构解析###1.1类加载子系统-**双亲委派模型**:采用层级式加载机制,防止核
- 基于支持向量机SVM的电网负荷预测,libsvm工具箱详解,SVM详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习SVM电网负荷预测svr
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于支持向量机SVM的电网负荷预测代码结果分析展望摘要基于支持向量机SVM的电网负荷预测,SVM原理,SVM工具箱详解,SVM常见改进方法支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空
- 20250310:OpenCV mat对象与base64互转
微风❤水墨
AI模型部署Mat转base64
代码:https://github.com/ReneNyffenegger/cpp-base64指南:https://renenyffenegger.ch/notes/development/Base64/Encoding-and-decoding-base-64-with-cpp/实操:
- 分子动力学仿真软件:GROMACS_(1).GROMACS基础知识
kkchenjj
分子动力学2仿真模拟模拟仿真分子动力学
GROMACS基础知识1.GROMACS简介GROMACS(GROningenMAchineforChemicalSimulations)是一款广泛用于分子动力学仿真的开源软件。它主要用于模拟蛋白质、脂质、核酸以及其他生物分子系统的动力学行为。GROMACS以其高效、灵活和强大的功能而闻名,支持大规模并行计算,适用于从小分子到复杂生物体系的多种应用场景。1.1GROMACS的历史和发展GROMAC
- python文件名过长报错No such file or directory
FL1623863129
环境配置经验分享
python读取一个超长路径文件名结果报错:Nosuchfileordirectory。原因不同操作系统对路径长度有不同的限制。在Windows上,路径长度限制是260个字符,而在Linux上则较长。如果路径长度超过了操作系统的限制,就会报“Nosuchfileordirectory”错误。解决方法修改Windows注册表,路径为:计算机\HKEY_LOCAL_MACHINE\SYSTEM\Cur
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =