python多线程编程: 使用互斥锁同步线程

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time, threading

# 假定这是你的银行存款:
balance = 0
muxlock = threading.Lock()

def change_it(n):
    # 先存后取,结果应该为0:
    global balance
    balance = balance + n
    balance = balance - n

def run_thread(n):
    # 循环次数一旦多起来,最后的数字就变成非0
    for i in range(100000):
        change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t3 = threading.Thread(target=run_thread, args=(9,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print balance

结果 :

[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
61
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
24

互斥锁同步

上面的例子引出了多线程编程的最常见问题:数据共享。当多个线程都修改某一个共享数据的时候,需要进行同步控制。
线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定。某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

#创建锁mutex = threading.Lock()
#锁定mutex.acquire([timeout])
#释放mutex.release()

其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。
使用互斥锁实现上面的例子的代码如下:


balance = 0
muxlock = threading.Lock()

def change_it(n):
    # 获取锁,确保只有一个线程操作这个数
    muxlock.acquire()
    global balance
    balance = balance + n
    balance = balance - n
   # 释放锁,给其他被阻塞的线程继续操作
    muxlock.release()

def run_thread(n):
    for i in range(10000):
        change_it(n)

加锁后的结果,就能确保数据正确:

[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0

你可能感兴趣的:(python多线程编程: 使用互斥锁同步线程)