本文结构:
- 什么是线性单元
- 有什么用
- 代码实现
1. 什么是线性单元
线性单元和感知器的区别就是在激活函数:
感知器的 f 是阶越函数:
线性单元的激活函数是线性的:
所以线性模型的公式如下:
2. 有什么用
感知器存在一个问题,就是遇到线性不可分的数据时,就可能无法收敛,所以要使用一个可导的线性函数来替代阶跃函数,即线性单元,这样就会收敛到一个最佳的近似上。
3. 代码实现
1. 继承Perceptron,初始化线性单元
from perceptron import Perceptron
#定义激活函数f
f = lambda x: x
class LinearUnit(Perceptron):
def __init__(self, input_num):
'''初始化线性单元,设置输入参数的个数'''
Perceptron.__init__(self, input_num, f)
2. 定义一个线性单元, 调用 train_linear_unit
进行训练
- 打印训练获得的权重
- 输入参数值 [3.4] 测试一下预测值
if __name__ == '__main__':
'''训练线性单元'''
linear_unit = train_linear_unit()
# 打印训练获得的权重
print linear_unit
# 测试
print 'Work 3.4 years, monthly salary = %.2f' % linear_unit.predict([3.4])
print 'Work 15 years, monthly salary = %.2f' % linear_unit.predict([15])
print 'Work 1.5 years, monthly salary = %.2f' % linear_unit.predict([1.5])
print 'Work 6.3 years, monthly salary = %.2f' % linear_unit.predict([6.3])
- 其中训练的过程就是:
- 获得训练数据,
- 设定迭代次数,学习速率等参数
- 再返回训练好的线性单元
def train_linear_unit():
'''
使用数据训练线性单元
'''
# 创建感知器,输入参数的特征数为1(工作年限)
lu = LinearUnit(1)
# 训练,迭代10轮, 学习速率为0.01
input_vecs, labels = get_training_dataset()
lu.train(input_vecs, labels, 10, 0.01)
#返回训练好的线性单元
return lu
完整代码
from perceptron import Perceptron
#定义激活函数f
f = lambda x: x
class LinearUnit(Perceptron):
def __init__(self, input_num):
'''初始化线性单元,设置输入参数的个数'''
Perceptron.__init__(self, input_num, f)
def get_training_dataset():
'''
捏造5个人的收入数据
'''
# 构建训练数据
# 输入向量列表,每一项是工作年限
input_vecs = [[5], [3], [8], [1.4], [10.1]]
# 期望的输出列表,月薪,注意要与输入一一对应
labels = [5500, 2300, 7600, 1800, 11400]
return input_vecs, labels
def train_linear_unit():
'''
使用数据训练线性单元
'''
# 创建感知器,输入参数的特征数为1(工作年限)
lu = LinearUnit(1)
# 训练,迭代10轮, 学习速率为0.01
input_vecs, labels = get_training_dataset()
lu.train(input_vecs, labels, 10, 0.01)
#返回训练好的线性单元
return lu
if __name__ == '__main__':
'''训练线性单元'''
linear_unit = train_linear_unit()
# 打印训练获得的权重
print linear_unit
# 测试
print 'Work 3.4 years, monthly salary = %.2f' % linear_unit.predict([3.4])
print 'Work 15 years, monthly salary = %.2f' % linear_unit.predict([15])
print 'Work 1.5 years, monthly salary = %.2f' % linear_unit.predict([1.5])
print 'Work 6.3 years, monthly salary = %.2f' % linear_unit.predict([6.3])
学习资料:
https://www.zybuluo.com/hanbingtao/note/448086
推荐阅读 历史技术博文链接汇总
也许可以找到你想要的
我是 不会停的蜗牛 Alice
85后全职主妇
喜欢人工智能,行动派
创造力,思考力,学习力提升修炼进行中
欢迎您的喜欢,关注和评论!