- 基于大模型的急性出血坏死性胰腺炎预测技术方案
LCG元
人工智能python
目录一、算法实现伪代码1.数据预处理与特征工程2.大模型训练(以Transformer为例)3.实时预测与动态调整二、模块流程图1.术前预测流程2.术中动态决策流程3.术后护理流程三、系统集成方案1.系统架构图2.核心模块交互流程四、系统部署拓扑图1.物理部署拓扑2.部署说明五、技术验证方案1.交叉验证流程2.实验验证设计六、健康教育模块示例一、算法实现伪代码1.数据预处理与特征工程#数据清洗与归
- 白杨SEO:微信视频号直播功能怎么开通?视频号有什么价值?
微信视频号直播是什么?微信视频号直播是什么?它就是微信视频号最新推出的可以在视频号上进行直播。目前仅在内测阶段,只有部分人获得。如何查看自己是否获得视频号直播功能呢?打开微信-发现里【视频号】-然后进入个人视频号界面,如果有发起直播即代表有了,如图:微信视频号直播与抖音、快手、淘宝、B站等直播有什么区别呢?目前根据据白杨SEO个人体验过来看,仅从直播功能来说,目前视频号直播还是新生儿,不管从直播各
- 使用大模型预测胃穿孔的全流程系统技术方案大纲
目录一、项目概述二、项目背景三、建设目标四、建设内容(一)建设架构(二)核心功能(三)核心技术(四)预期成效(五)方案总结五、系统架构方案流程图六、实验验证证据七、健康教育与指导一、项目概述本项目旨在构建一套基于大模型的胃穿孔预测及全流程管理系统,通过整合术前、术中、术后各环节数据,利用先进的人工智能技术,实现对胃穿孔疾病的精准预测、手术方案优化、并发症风险预警以及术后护理指导等功能,为医疗决策提
- 淘宝卖什么比较好?
资源客
淘宝卖什么比较好新手开店
在淘宝平台经营时,选择具有市场潜力且符合平台生态的商品品类是成功的关键。结合当前消费趋势、平台数据及用户需求,以下品类具有较高的商业价值和发展潜力:一、高潜力消费品类美妆与个人护理核心优势:消费者对美妆产品的需求持续增长,尤其注重成分安全性和品牌口碑。护肤、彩妆、美发工具等细分领域存在机会。策略建议:优先选择具有差异化或创新性的产品(如天然成分、便携设计),结合直播带货和内容营销提
- C语言内存的“禁区”:为何不能返回局部变量的地址?
web安全工具库
2025C++学习c语言开发语言
资料合集下载链接:https://pan.quark.cn/s/472bbdfcd014在C语言编程中,指针和内存管理是两大核心,也是许多新手甚至有经验的开发者容易踩坑的地方。一个经典的问题就是:“为什么我的函数返回一个指针,有时候能用,有时候程序就崩溃了?”答案往往藏在C语言的内存分区模型中。今天,我们就根据一份课堂笔记,深入探讨一个关键的“禁区”:从函数返回局部变量的地址,并搞清楚为什么有些地
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、系统架构设计(一)数据采集与预处理模块(二)大模型核心算法模块(三)应用层功能模块三、全流程系统流程图四、术前阶段详细方案(一)患者信息采集与整合(二)胆囊结石风险预测(三)手术方案制定辅助(四)麻醉方案规划五、术中阶段详细方案(一)实时数据监测与传输(二)手术进程智能辅助六、术后阶段详细方案(一)术后恢复情况预测(二)并发症风险预测(三)护理方案调整(四)康复指导七、并发症风险预
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- 2024老年护理新前沿:养老实训室的创新应用
康实训
养老实训室智慧养老
随着人口老龄化的加速,如何为老年人提供优质的养老服务已成为社会关注的重点。在这一背景下,养老实训室应运而生,成为培养专业养老人才、改善老年人生活质量的新兴平台。与传统的课堂教学相比,养老实训室能够为学员提供更为生动、贴近实际的培训体验,为老年护理事业注入创新动力。一、养老实训室的功能优势模拟真实环境,提升操作技能养老实训室通过还原老年人的居住环境,如卧室、浴室等,让学员能实际操作各种日常护理技能,
- 老年基础护理实训室建设方案:构建标准化护理实训体系
凯禾瑞华_实训室建设
实训室建设人工智能大数据vrar虚拟现实unity
一、实训室特色(一)高度仿真场景老年基础护理实训室建设方案强调构建高度仿真的老年护理场景,模拟家庭、养老院、医院病房等真实环境,配备仿真老年人体模型、适老化家具及设备,让学生身临其境开展实训。点击获取实训室建设方案(二)智能化设备应用引入智能护理监测设备、模拟急救仪器等,结合DeepSeek+知识库大模型,实现实训过程数据记录与分析,为教学提供精准反馈,此为老年基础护理实训室建设方案的重要创新点。
- 老年综合实训室功能:重塑老年健康服务教育实践体系
凯禾瑞华_实训室建设
实训室建设大数据人工智能vrar虚拟现实unity
一、老年综合实训室的教育价值随着老年人口数量的增加和对健康服务需求的多元化,社会需要具备综合能力的老年健康服务人才。老年综合实训室具备多功能集成的特点,能够涵盖老年生活照料、健康护理、心理慰藉、康复训练等多个领域的实践教学。在老年综合实训室中,学生可以接触到不同类型的老年健康服务场景,锻炼多方面的能力,从而成为适应社会需求的复合型人才,这对于提升老年健康服务教育的质量和效果具有重要意义。点击获取实
- 养老专业实训室虚拟仿真建设方案
凯禾瑞华_实训室建设
实训室建设大数据人工智能vrar智慧养老智慧康养智慧健康养老服务与管理
一、实训室功能1、模拟真实养老场景打造居家养老室、半失能老人照护室、失能老人照护室等,从室内布局到设施配备,均高度还原现实中老年人的生活与照护环境。例如,居家养老室设置会客区、起居区、卫浴区、厨房等,配备齐全的生活设施与智能监测设备,让学生如同置身于真实的老年人家中,学习居家养老护理技能。点击获取实训室建设方案2、健康评估与干预健康评估室具备生命体征评估、运动功能评估、认知功能评估等多个区域,配备
- 基于大模型预测原发性醛固酮增多症的综合技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述三、术前阶段(一)数据采集与预处理(二)疾病诊断与分型预测(三)并发症风险预测四、术中阶段(一)实时数据监测与整合(二)手术决策支持(三)麻醉方案动态优化五、术后阶段(一)康复进度监测与预测(二)并发症监测与干预(三)术后护理指导六、统计分析与技术验证(一)模型性能评估指标体系(二)对比研究与临床实效分析七、实验验证证据(一)回顾性病例研究(二)前瞻性临床试验八、健康教
- 优格杂志优格杂志社优格编辑部2025年第11期部分目录
QQ296078736
人工智能
优格杂志社优格编辑部2025年第11期部分目录城市养生社区养老模式下老年人心理护理需求乌云高娃1-3走进超声医学的奇妙世界:揭秘超声技术的多样性胡丽丽4-6做有温度的产科护理,筑牢母婴安全防线鲁娜李襄君7精准翻身干预:降低压疮发生率的新方法陈思8月经紊乱与潜在疾病的关联马占兰9师者说让体育课成为生命成长的摇篮杜俊义10读说写教学模式在英语课堂如何人文化实施李刚强11巧借小学数学教学,培育学生数学思
- 优化给AI的“提问技巧”(提示工程),让大型语言模型(比如GPT)更好地扮演“心理治疗助手”的角色
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能语言模型gpttransformer深度学习prompt自然语言处理
优化给AI的“提问技巧”(提示工程),让大型语言模型(比如GPT)更好地扮演“心理治疗助手”的角色尤其是在“问题解决疗法”(PST)中帮助caregivers(家庭护理者)缓解焦虑、疲劳等心理症状。以下是核心内容的通俗解读:一、研究背景:AI当心理医生靠谱吗?现状:全球有20%的人需要心理帮助,但心理医生严重短缺。AI聊天模型(如GPT)能生成连贯对话,可能填补这个缺口,但它的“治疗能力”还不清楚
- 13、开源技术在社区护理中的应用与实践
易个小小钡原子
开源技术社区护理健康监测系统
开源技术在社区护理中的应用与实践1引言健康不仅仅意味着没有疾病或虚弱。为了维持健康,社会和卫生系统之间的协调与合作变得至关重要,而这只能通过现有和新的综合信息系统的协调来实现。在这项研究中,我们将讨论通常对健康和社会护理应用程序所期望的主要要求。为此,将介绍一些商业应用程序的特性。最后,我们将这些要求和特性与通过适当集成的现有开源项目可获得的那些进行对比。2社区护理的发展背景提供医疗和社会服务的环
- 使用大模型预测短暂性脑缺血发作(TIA)的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能深度学习机器学习方案大纲
目录一、系统概述1.1方案背景1.2方案目标1.3方案范围二、术前预测方案2.1数据收集与整合2.2模型构建与训练2.3手术方案生成三、术中决策方案3.1实时数据监测3.2大模型实时风险预警3.3麻醉方案动态调整四、术后风险预测与护理方案4.1术后并发症预测4.2个性化护理方案4.3出院风险评估与随访计划五、并发症风险预测方案5.1风险因素分析5.2预测模型构建5.3预测结果应用六、技术验证方法6
- 基于大模型预测单纯性孔源性视网膜脱离的技术方案
目录一、算法实现伪代码1.数据预处理模块2.大模型训练模块3.预测与决策模块二、模块流程图(Mermaid格式)数据采集与预处理系统模型训练与部署系统术中决策支持系统三、系统集成方案及流程图系统集成流程图系统部署拓扑图四、关键模块详细说明1.数据采集系统2.术中决策支持系统3.术后护理系统一、算法实现伪代码1.数据预处理模块defpreprocess_data(image,patient_info
- 基于大模型的结节性甲状腺肿预测与综合管理技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习算法
目录一、技术方案大纲(一)研究背景与目的(二)数据采集与预处理(三)大模型构建与训练(四)术前预测与评估(五)术中辅助决策(六)术后管理与预测(七)并发症风险预测与预防策略(八)根据预测制定手术方案(九)麻醉方案制定(十)术后护理方案制定(十一)统计分析与模型评估(十二)技术验证方法(十三)实验验证证据(十四)健康教育与指导(十五)结论与展望二、流程图一、技术方案大纲(一)研究背景与目的阐述结节性
- 基于大模型预测的上睑下垂综合诊疗技术方案研究报告大纲
LCG元
大模型医疗研究-方案大纲方案大纲机器学习深度学习人工智能
目录一、引言二、技术方案概述(一)术前阶段(二)术中阶段(三)术后阶段(四)并发症风险预测(五)根据预测制定手术方案(六)麻醉方案制定(七)术后护理方案(八)统计分析(九)技术验证方法(十)实验验证证据(十一)健康教育与指导三、技术方案流程图四、结论摘要:本研究旨在探讨利用大模型预测技术优化上睑下垂的诊疗流程。通过对术前评估、术中决策、术后护理及并发症风险预测等多方面的深入研究,结合大模型的强大数
- 基于大模型预测单纯性孔源性视网膜脱离的技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能深度学习机器学习方案大纲
目录一、引言二、技术方案大纲(一)术前阶段(二)术中阶段(三)术后阶段(四)并发症风险预测专项(五)手术方案制定(六)麻醉方案制定(七)术后护理(八)统计分析(九)技术验证方法(十)实验验证证据(十一)健康教育与指导(十二)技术方案流程图三、结论一、引言单纯性孔源性视网膜脱离是眼科常见的致盲性眼病之一,及时准确的诊断、有效的治疗决策以及科学的护理对于患者的预后至关重要。近年来,大模型在医学领域的应
- 基于大模型预测急性横贯性脊髓炎的综合技术方案研究报告大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、技术方案总体架构三、术前预测与决策四、术中监测与决策支持五、术后护理与康复指导六、统计分析与技术验证七、实验验证与证据支持八、健康教育与指导九、结论与展望一、引言(一)研究背景急性横贯性脊髓炎的临床现状与挑战阐述急性横贯性脊髓炎的发病率、致残率以及对患者生活质量的严重影响,强调准确预测和精准治疗的重要性。大模型技术在医疗领域的应用前景简述大模型在医学影像分析、疾病诊断与预测等方面的
- 基于大模型的脑出血全流程预测系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、系统概述三、系统架构(一)数据采集与预处理层(二)模型训练与优化层(三)预测与决策支持层(四)数据管理与分析层(五)用户交互与应用层四、术前预测(一)数据采集(二)数据预处理(三)脑出血风险预测模型(四)手术方案制定(五)麻醉方案推荐五、术中监测与决策(一)数据采集(二)数据预处理(三)实时病情监测模型(四)手术策略调整建议六、术后护理与康复(一)数据采集(二)数据预处理(三)并发
- Biomni:通用生物医学AI Agent
tzc_fly
生物计算工具人工智能
生物医学研究是我们理解人类健康与疾病、药物发现和临床护理进展的基础。然而,随着复杂实验室实验、大型数据集、众多分析工具和海量文献的不断增长,生物医学研究日益受到重复性和碎片化工作流程的限制。Biomni是一种通用型生物医学人工智能代理,旨在自主执行跨多个生物医学子领域的广泛研究任务。为了系统地绘制生物医学动作空间,Biomni首先利用动作发现代理创建了首个统一的代理环境——从25个生物医学领域的数
- 1.3 Python 实例1:温度转换
孤柒「一起学计算机」
#Python课件Python实例温度转换
本文内容为北京理工大学Python慕课课程的课程讲义,将其整理为OneNote笔记同时添加了本人上课时的课堂笔记,且主页中的思维导图就是根据课件内容整理而来,为了方便大家和自己查看,特将此上传到CSDN博文中,源文件已经上传到我的资源中,有需要的可以去看看,我主页中的思维导图中内容大多从我的笔记中整理而来,相应技巧可在笔记中查找原题,有兴趣的可以去我的主页了解更多计算机学科的精品思维导图整理本文可
- 6.3 Python 实例9-基本统计值计算
孤柒「一起学计算机」
#Python课件Python实例基本统计值
本文内容为北京理工大学Python慕课课程的课程讲义,将其整理为OneNote笔记同时添加了本人上课时的课堂笔记,且主页中的思维导图就是根据课件内容整理而来,为了方便大家和自己查看,特将此上传到CSDN博文中,源文件已经上传到我的资源中,有需要的可以去看看,我主页中的思维导图中内容大多从我的笔记中整理而来,相应技巧可在笔记中查找原题,有兴趣的可以去我的主页了解更多计算机学科的精品思维导图整理本文可
- 迪米科技DM20075微型测温模组:高精度穿戴式红外测温解决方案
小渝~
非接触式红外测温红外传感器智能穿戴类测温健康医疗
一、迪米DM20075测温模组的介绍:迪米DM20075测温模组搭载的红外温度传感器是一款小型贴片式温度芯片,是目前为止最小型的红外测温模组;超小体积大幅缩减了传统测温模组的空间占用,具备出色的热稳定性,受外部环境影响极小;在智能穿戴领域优势显著,如女性生理周期追踪、持续可靠的体温监测、运动与健康管理等场景;典型应用包括:智能穿戴设备、智能戒指、耳戴式设备、便携式诊断设备及临床护理监测等。二、迪米
- 聊聊医疗行业为什么需要私有化部署的即时通讯系统
小天互连即时通讯
网络
在医疗行业信息化中,即时通讯工具的使用可以提高医疗团队的沟通效率、优化工作流程以及提升医疗服务质量。在日常工作交流中,医生、护士、药师等医疗人员可以通过即时通讯工具快速交流患者的病情、治疗方案、护理措施等信息。医疗团队可以利用即时通讯工具的群组功能,进行病例讨论。医疗机构可以利用即时通讯工具组织远程培训和学术交流活动。为了确保即时通讯工具在医疗行业中的安全、规范使用,即时通讯系统的部署上需要做到提
- 基于大模型预测老年性白内障的综合技术方案研究大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述(一)数据收集与预处理(二)大模型构建与训练(三)术前评估与预测(四)手术方案制定(五)麻醉方案优化(六)术后护理指导(七)并发症风险预测与管理(八)统计分析与验证(九)健康教育与指导三、技术方案流程图四、实验验证证据(一)回顾性研究(二)前瞻性试验五、结论摘要:本研究聚焦于运用大模型技术全面介入老年性白内障诊疗流程,涵盖术前精准评估、术中决策辅助、术后护理优化、并发症
- 基于大模型的肾结石诊疗全流程风险预测与方案制定研究报告
LCG元
围术期危险因子预测模型研究人工智能机器学习python
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目标与内容二、大模型技术原理与应用概述2.1大模型的基本原理2.2大模型在医疗领域的应用进展2.3适用于肾结石预测的大模型选择与依据三、术前风险预测与准备3.1患者身体状况评估3.2结石情况分析3.3术前准备方案制定四、术中风险预测与应对4.1出血风险预测与处理4.2脏器损伤风险预测与预防4.3实时监测与决策支持五、术后恢复预测与护理5
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象