基于迭代单元的恢复余数开方器

基于迭代单元的恢复余数开方器

基本算法

该开方器的算法与“手算”(以前并不知道开方还有这种手算的方法)算法相似,使用迭代解决,文字描述如下

  1. 将0为余数的初值a,0作为结果初值b
  2. 将被开方数前两位{I(2m + 1),I(2m)}取出,与01比较大小。若前两位大,则{I(2m + 1),I(2m)} - 01为输出余数(a(m)),输出结果1(b(m)),否则{I(2m + 1),I(2m)}为输出余数(a(m)),输出结果0(b(m)
  3. 将被开方数的从高位数第3,4位{I(2m - 1),I(2m - 2)}取出,比较{a(m),I(2m - 1),I(2m - 2)}{b(m),2'b01}的大小,若前一项大,则输出余数a(m - 1)为前一项减后一项,输出结果b(m - 1){b(m),1};否则,输出余数为前一项(直接输出),输出结果b(m - 1){b(m),0}
  4. ...
  5. 直到计算完被开方数结束

迭代单元

算法

迭代单元的算法比较简单,描述如下:

  1. 组合输入余数和当前开方数的两位{b,I(i),I(i - 1)},组合输入结果和01为{a,2'b01}
  2. 比较大小,若组合余数大则输出余数为组合余数减去组合结果,输出结果{a,1};否则余数输出组合余数,结果输出{a,0}

RTL代码

module square_cell #(
    parameter WIDTH = 4,
    parameter STEP = 0
)(
    input clk,    // Clock
    input rst_n,  // Asynchronous reset active low

    input [2 * WIDTH - 1:0]radicand,
    input [WIDTH - 1:0]last_dout,
    input [2 * WIDTH - 1:0]remainder_din,

    output reg [WIDTH - 1:0]this_dout,
    output reg [2 * WIDTH - 1:0]remainder_dout
);

wire [2 * WIDTH - 1:0]target_data = {remainder_din[2 * WIDTH - 3:0],radicand[2 * STEP +:2]};
wire [2 * WIDTH - 1:0]try_data = {last_dout,2'b01};

always @(posedge clk or negedge rst_n) begin
    if(~rst_n) begin
        {this_dout,remainder_dout} <= 'b0;
    end else begin
        if(target_data >= try_data) begin
            this_dout <= {last_dout[WIDTH - 2:0],1'b1};
            remainder_dout <= target_data - try_data;
        end else begin
            this_dout <= {last_dout[WIDTH - 2:0],1'b0};
            remainder_dout <= target_data;
        end
    end
end
endmodule

顶层与Testbench

顶层单元

module square_extractor #(
    parameter WIDTH = 4
)(
    input clk,    // Clock
    input rst_n,  // Asynchronous reset active low

    input [2 * WIDTH - 1:0]radicand,

    output [WIDTH - 1:0]dout,
    output [2 * WIDTH - 1:0]remainder
);

genvar i;
generate
    for (i = WIDTH - 1; i >= 0; i = i - 1) begin:square
        wire [2 * WIDTH - 1:0]remainder_dout,remainder_din;
        wire [WIDTH - 1:0]this_dout,last_dout;
        if(i == WIDTH - 1) begin
            assign remainder_din = 'b0;
            assign last_dout = 'b0;
        end else begin
            assign remainder_din = square[i + 1].remainder_dout;
            assign last_dout = square[i + 1].this_dout;
        end
        square_cell #(
            .WIDTH(WIDTH),
            .STEP(i)
        ) u_square_cell (
            .clk(clk),    // Clock
            .rst_n(rst_n),  // Asynchronous reset active low

            .radicand(radicand),
            .last_dout(last_dout),
            .remainder_din(remainder_din),

            .this_dout(this_dout),
            .remainder_dout(remainder_dout)
        );
    end
endgenerate

assign dout = square[0].this_dout;
assign remainder = square[0].remainder_dout;

endmodule

TestBench

Testbench输入随机的输入后,等待完成,完成后取结果和余数看是否能恢复出正确的输入

module tb_square (
);

parameter WIDTH = 4;

logic clk;    // Clock
logic rst_n;  // Asynchronous reset active low

logic [2 * WIDTH - 1:0]radicand;

logic [WIDTH - 1:0]dout;
logic [2 * WIDTH - 1:0]remainder;

square_extractor #(
    .WIDTH(WIDTH)
) dut (
    .clk(clk),    // Clock
    .rst_n(rst_n),  // Asynchronous reset active low

    .radicand(radicand),

    .dout(dout),
    .remainder(remainder)
);

initial begin
    clk = 0;
    forever begin
        #50 clk = ~clk;
    end
end

initial begin
    rst_n = 1'b1;
    #5 rst_n = 1'b0;
    #10 rst_n = 1'b1;
end

logic [2 * WIDTH - 1:0]act;
logic [2 * WIDTH - 1:0]dout_ex;
initial begin
    radicand = 'b0;
    forever begin
        @(negedge clk);
        radicand = (2 * WIDTH)'($urandom_range(0,2 ** (2 * WIDTH)));
        repeat(4 * WIDTH) begin
            @(negedge clk);
        end
        dout_ex = '{dout};
        act = dout_ex * dout_ex + remainder;
        if(act != radicand) begin
            $stop;
        end
    end
end

endmodule

你可能感兴趣的:(基于迭代单元的恢复余数开方器)