- Python连接SQL SEVER数据库全流程
m0_74823131
数据库pythonsql
背景介绍在数据分析领域,经常需要从数据库中获取数据进行分析和处理。而SQLServer是一种常用的关系型数据库管理系统,因此学习如何使用Python连接SQLServer数据库并获取数据是非常有用的。以下是Python使用pymssql连接SQLServer数据库的全流程:安装pymssql库本地账号设置脚本连接数据导入函数实现一、安装pymssqlpymssql是Python连接SQLServe
- 基于springboot的社区团购系统设计
Olivia-gogogo
springboot后端java
一、引言在当今数字化时代,信息技术正以前所未有的速度渗透到社会的各个领域,深刻地改变着人们的生活和工作方式。教育领域也不例外,随着高等教育的普及和招生规模的不断扩大,大学生入学审核工作面临着越来越大的挑战。传统的人工入学审核方式已难以满足现代教育管理的需求,暴露出诸多弊端。传统人工入学审核方式效率低下。在每年的招生季,高校招生工作人员需要面对大量的入学申请材料,这些材料不仅数量庞大,而且种类繁多,
- 五个冷门的Adobe系列软件小技巧
reddingtons
adobe
在当今的数字时代,Adobe系列软件在设计、视频编辑和创意制作领域占据着重要地位。许多学校和教育机构为学生提供教育邮箱,允许他们免费使用Adobe全系列软件的教育订阅。这意味着无论是Photoshop、Illustrator还是PremierePro等热门软件,学生都能轻松获取。然而,本文将分享一些冷门的Adobe软件小技巧,这些技巧主要适用于付费用户,可能不适用于某些免费用户。小技巧一:使用Ad
- python垃圾分类游戏_垃圾分类就要来了?教你使用Python轻松完成垃圾分类
weixin_39627390
python垃圾分类游戏
从7月1日起,上海市正式实施《上海市生活垃圾管理条例》。条例规定,个人混合投放垃圾今后可最高罚200元,单位混装混运,最高可罚至5万元,而且违规还将会列入征信,堪称“史上最严垃圾分类措施”。相信最近一段时间大家已经被上海的小伙伴们因为垃圾分类的困扰而刷屏了,就在大家还在一片“与我无瓜”中暗自庆幸时,现实给了我们一击:该来的总要来,谁都逃不过去。其实,在我国垃圾分类的举措要从2000年开始,但效果并
- 奇迹科技:蓝牙网关赋能少儿篮球教育的创新融合案例研究
Ms_lan
蓝牙网关北京桂花网智慧体育
一、引言本文研究了福建奇迹运动体育科技有限公司(简称‘奇迹科技’)如何利用其创新产品体系和桂花网蓝牙网关M1500,与少儿篮球教育实现深度融合。重点分析其在提升教学效果、保障训练安全、优化个性化教学等方面的实践与成效,为教育机构和从业者提供参考。二、企业背景奇迹科技由国资上市企业浙数集团与福建省互联网十强企业来玩互娱联合注资成立,专注于数字化体育产业,业务包括数字体育科技研发、打造并运营少儿科技篮
- 一文说清预训练与微调:AI的双重训练法则
TGITCIC
AI-大模型的落地之道人工智能深度学习
什么是预训练?预训练是大型语言模型训练的第一步。它在资金和计算能力的支持下,通过深入分析大量的文本数据,使模型建立起语言的基本构架。在这一阶段,模型通过学习海量的书籍、文章和网页,识别出语言的语法、句法和词汇规律。这就如同一名学生接受通识教育,他并没有专注于某一门学科,而是获取了多方面的知识。自回归语言建模和掩码语言建模是预训练中常见的两种方法。前者在逐步构建文本的连贯性时,通过预测下一单词的方式
- springboot 项目如何提高并发量
LCY133
spring后端springbootjava后端
提升基于SpringBoot的Web项目并发量需要从应用优化、数据库调优、缓存策略、异步处理、水平扩展等多方面综合改进。以下是具体方案和实践建议:一、应用层优化1.代码性能优化•避免阻塞操作:减少同步锁、长事务、大文件处理等耗时操作。•优化SQL查询:避免N+1查询,使用索引,减少全表扫描。•复用对象:避免频繁创建大对象(如JSON解析工具),使用线程安全对象池。2.线程池配置•调整Web服务器线
- 如何使用JSON输出解析器解析语言模型的输出
vaidfl
json语言模型easyuipython
在现代AI应用中,让语言模型返回结构化的数据是一个重要的能力,特别是在需要进一步处理或集成的时候。本文将深入探讨如何利用JsonOutputParser来解析语言模型的JSON输出。技术背景介绍随着语言模型的普及,许多应用场景需要从自然语言处理任务中获取结构化的输出。针对这一需求,输出解析器应运而生,它能够帮助我们定义JSON模式,通过提示语言模型生成符合该模式的输出,并将其解析为JSON格式。核
- 使用LangChain加载College Confidential数据
scaFHIO
langchainpython
#使用LangChain加载CollegeConfidential数据##技术背景介绍CollegeConfidential是一个提供有关3800+所大学和学院信息的平台。它被广泛使用于教育咨询和申请指导领域。为了方便开发者从CollegeConfidential获取数据,我们可以使用LangChain的`CollegeConfidentialLoader`模块进行加载和处理。##核心原理解析La
- 3(三) Jmeter参数化-正则表达式提取器
夜晚打字声
工具jmeter正则表达式
先说一个简单的参数化,正则表达式提取器的用处使用场景是这样的,我们两个请求,分别是展示地址和删除地址,删除地址的请求参数中,有一个参数为id,该id为展示地址时返回的id。我们要从展示地址接口的返回报文中拿id,放到删除地址的请求参数中来,这时候就需要用到正则表达式提取器。下面说一下实战操作。因为每次地址是新添加的,所以每次的地址id都不同,在添加后将改地址进行删除,所以我们为了循环这套业务流,我
- AI巨浪中的安全之舵:天空卫士助力人工智能落地远航
天空卫士
人工智能安全数据安全网络安全大数据
"AI时代的安全战场,不在云端在本地;数据治理的胜负手,不在防御在认知。"近期,众多企业纷纷接入DeepSeek大模型,迅速推动了大型模型应用的广泛铺开。无论是在制造业、金融业,还是在医疗、教育等领域,DeepSeek大模型的应用都如火如荼,遍地开花,展现出了其广泛的应用前景和巨大的商业价值。顺势而来的是DeepSeek一体机以"低成本、高算力、私有化部署"的优势席卷企业市场。因为DeepSeek
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- 记录华为OBS文件上传下载多种方式
yychen_java
java华为javaspring
公司要从阿里的oss切换到华为的obs,为了尽量小代价的改动,所以想找和阿里一样上传的方式,之前阿里做的是后端生成文件上传的url,前端做上传动作,这里记录一下obs的多种上传方式。直接上代码:1、获取OBS配置引入mavencom.huaweicloudesdk-obs-java3.21.11其中的各种配置自己在华为平台找到哦。importcom.obs.services.ObsClient;i
- Apache Tomcat 远程代码执行漏洞复现(CVE-2025-24813)(附脚本)
iSee857
漏洞复现apachetomcatjavaweb安全安全
免责申明:本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。0x01产品描述:ApacheTomcat是一个开源的JavaServlet容器和Web服务器,支持运行JavaServlet、JavaServerP
- 鸿蒙开发秘籍:用AvPlayer解锁录音朗读新玩法
柳中仙
鸿蒙HarmonyOSharmonyos华为
鸿蒙开发秘籍:用AvPlayer解锁录音朗读新玩法一、引言家人们,在鸿蒙应用开发这个超广阔的领域里,音频处理可是相当重要的一环!它让应用的功能更丰富,用户体验也更好啦。像社交类应用里收发语音消息,教育类应用播放有声读物,还有音乐类应用的核心播放功能,都离不开音频处理。通过有效的音频处理,应用能和用户互动得更生动、更直接,用户用的时候既能享受听觉上的快乐,又觉得方便,应用的吸引力和实用性一下子就提升
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(二)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(二)5.跨模态检索系统应用场景5.1图文匹配系统的实际应用应用领域具体场景优势电子商务商品图像搜索、视觉购物用户可以上传图片查找相似商品或使用文本描述查找商品智能媒体内容推荐、图片库搜索通过内容的语义理解提供更精准的推荐和搜索社交网络基于内容的帖子推荐理解用户兴趣,提供更相关的内容推荐教育技术多模态教学资源检索教师和学生可以更
- 凌晨三点的代码和引擎轰鸣声
前端后端程序员
凌晨三点,我盯着屏幕上第37次报错的算法,随手抓起桌角已经冷透的咖啡猛灌一口。显示器蓝光里,同事阿杰突然弹出一条消息:"哥们儿,苏州有个车展能撸代码,去不去?"我对着这句话愣了三秒。车展?在我的认知里,那应该是西装革履的销售围着超模拍宣传片的场合,和我们这种格子衫生物有什么关系?直到阿杰甩来一张海报——黑底荧光绿字刺破视网膜:"CISHOWGTSHOW,程序员特别通道,票免费送。"01被编译器耽误
- 360度用户信息赋能老客运营自动化
刘小奇�多
自动化运维sass
在当今竞争激烈的商业环境中,客户关系管理(CRM)系统已成为企业提升客户满意度和忠诚度的重要工具。通过基于360度用户信息,企业能够深入洞察老客需求,实现自动化的老客运营和维护,从而提升客户体验和企业竞争力。一、360度用户信息整合:洞察老客需求的关键(一)多渠道数据收集企业需要从多个渠道收集客户数据,包括线上线下的交互记录。例如,通过企业微信,销售人员可以实时与客户沟通,了解他们的最新需求和反馈
- 金融、教育等行业如何高效利用wangEditor实现word文档网页化编辑?
2501_90699850
金融wordumeditor粘贴wordueditor粘贴wordueditor复制wordueditor上传word图片ueditor导入word
要求:开源,免费,技术支持编辑器:wangEditor前端:vue2,vue3,vue-cli,html5后端:java,jsp,springboot,asp.net,php,asp,.netcore,.netmvc,.netform群体:学生,个人用户,外包,自由职业者,中小型网站,博客,场景:数字门户,数字中台,站群,内网,外网,信创国产化环境,web截屏行业:医疗,教育,建筑,政府,党政,国
- 架构演进的方式
pumpkin84514
架构设计架构
架构演进过程中,常用的三种模式是拆迁者模式、绞杀者模式和修缮者模式。它们代表了三种不同的演进路径,适用于不同的业务环境和技术场景。下面详细解释每种模式的内容、使用场景,并对比它们的差异。1.拆迁者模式内容拆迁者模式(也称为重建模式)是一种彻底重构现有系统的方式。通常,在这种模式下,原有系统被完全放弃,并用一个全新的系统替代。在这种情况下,架构和代码需要从头开始重新设计和实现。使用场景系统老化严重:
- 什么是巨量本地推?
矩阵+本地推+数字人
mongodb深度学习人工智能学习方法职场和发展创业创新交互
本地推(本地化推广)作为针对特定区域客户的营销策略,对商家而言既是提升竞争力的利器,也是适应消费趋势的必然选择。以下从作用、必要性及未来趋势三方面展开分析:一、本地推的核心作用1.精准触达目标客户基于地理位置(LBS)定向推送广告,覆盖周边3-5公里内的潜在消费者,尤其适合餐饮、零售、教育等依赖线下流量的行业。案例:咖啡店通过本地推发放“附近用户专属折扣券”,直接刺激到店消费。2.提升品牌曝光与信
- python离线语音转文本_使用Python将语音转换为文本的方法
weixin_39760619
python离线语音转文本
使用Python将语音转换为文本的方法,语音,转换为,文本,您的,麦克风使用Python将语音转换为文本的方法易采站长站,站长之家为您整理了使用Python将语音转换为文本的方法的相关内容。语音识别是计算机软件识别口语中的单词和短语,并将其转换为可读文本的能力。那么如何在Python中将语音转换为文本?如何使用SpeechRecognition库在Python中将语音转换为文本?我们不需要从头开始
- Hugging Face预训练GPT微调ChatGPT(微调入门!新手友好!)
y江江江江
机器学习大模型gptchatgpt
HuggingFace预训练GPT微调ChatGPT(微调入门!新手友好!)在实战中,⼤多数情况下都不需要从0开始训练模型,⽽是使⽤“⼤⼚”或者其他研究者开源的已经训练好的⼤模型。在各种⼤模型开源库中,最具代表性的就是HuggingFace。HuggingFace是⼀家专注于NLP领域的AI公司,开发了⼀个名为Transformers的开源库,该开源库拥有许多预训练后的深度学习模型,如BERT、G
- 数智读书笔记系列021《大数据医疗》:探索医疗行业的智能变革
Allen_Lyb
数智读书笔记大数据健康医疗人工智能python
一、书籍介绍《大数据医疗》由徐曼、沈江、余海燕合著,由机械工业出版社出版。徐曼是南开大学商学院副教授,在大数据驱动的智能决策研究领域颇有建树,尤其在大数据驱动的医疗与健康决策方面有着深入研究,曾获天津优秀博士论文、教育部博士研究生新人奖。沈江等作者也在相关学术和实践领域有着丰富的经验和深厚的专业知识。这本书系统且深入地探讨了大数据技术在医疗领域的应用与变革,对推动医疗行业的智能化发展具有重要的理论
- 端到端数字人生产线:如何实现日均3000条视频的工业级输
井云AI
人工智能
端到端数字人生产线:基于DAG引擎如何实现日均3000条视频的工业级输出?一、行业困局:短视频生产的效率魔咒2025年《内容科技白皮书》数据显示:83%企业因人工剪辑效率低下错失流量红利(MCN机构月损500万+)6小时/条传统视频从脚本到成片的平均耗时(行业调研)15%误判率人工审核导致优质内容被误杀(教育品牌实测)这些数字背后,是内容生产领域的三重矛盾:质量、效率与合规的不可兼得。二、技术破局
- 基于springboot大学生入学审核系统的设计与实现
Olivia-gogogo
springboot数据库后端
一、引言在当今数字化时代,信息技术正以前所未有的速度渗透到社会的各个领域,深刻地改变着人们的生活和工作方式。教育领域也不例外,随着高等教育的普及和招生规模的不断扩大,大学生入学审核工作面临着越来越大的挑战。传统的人工入学审核方式已难以满足现代教育管理的需求,暴露出诸多弊端。传统人工入学审核方式效率低下。在每年的招生季,高校招生工作人员需要面对大量的入学申请材料,这些材料不仅数量庞大,而且种类繁多,
- 5个冷门的Adobe系列软件小技巧
reddingtons
adobe
在当今数字化时代,许多学生和教育工作者可以利用教育邮箱免费访问Adobe全系列软件。这意味着您不仅可以使用Photoshop、Illustrator等热门软件,还可以体验Adobe的其他强大工具。由于这些技巧涉及到一些收费软件,因此免费用户可能无法使用。接下来,我们将分享五个冷门的Adobe系列软件小技巧,希望能帮助您更好地利用这些工具。1.在AdobeAcrobat中添加水印在处理PDF文件时,
- 浏览器的组成、渲染过程及缓存机制
全马必破三
浏览器前端edge浏览器开发语言
浏览器的主要功能是将用户选择的web资源呈现出来,它需要从服务器请求资源,并将其显示在浏览器窗口中。用户用URI(UniformResourceIdentifier统一资源标识符)来指定所请求资源的位置浏览器的组成浏览器可以分为两部分,shell和内核。其中shell的种类相对比较多,内核则比较少。也有一些浏览器并不区分外壳和内核。从Mozilla将Gecko独立出来后,才有了外壳和内核的明确划分
- ci如何做才能做到每秒rps 为3000+
行思理
LNMP运维CIphp
要让CodeIgniter(CI)实现每秒3000+RPS(RequestsPerSecond)的高并发处理能力,需要从框架优化、服务器配置、代码设计等多方面入手。尽管CI本身是一个轻量级框架,但其默认配置和传统PHP-FPM模式的性能天花板较低(通常RPS在500-800左右),需通过以下优化策略突破性能瓶颈:一、核心优化方向1.升级PHP版本与启用OPcachePHP8+:使用PHP8.0及以
- 科技资讯杂志科技资讯编辑部科技资讯杂志社2025年第2期目录
QQ296078736
人工智能
学思践悟二十大党的二十大背景下以人民为中心发展教育的路径探究宋靖玮;韩冰;1-3党的二十大精神引领下药学课程群思政育人探索与实践——以应用型本科生物制药专业为例张志国;张媛婷;刘畅;闫立地;岳华;徐晶雪;秦姝冕;王雨欣;4-8党的二十大背景下“资源再生利用”思政教学的设计研究孟娟;秦恒飞;罗京;蒋杰;程龙;9-11+15践行党的二十大精神探索机器人工程专业创新型人才培养新模式郭霆;安少军;张明慧;
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><