cassandra

/

下载蛋疼

axel -n 20 http://mirrors.hust.edu.cn/apache/cassandra/3.10/apache-cassandra-3.10-bin.tar.gz

下载16s搞定

axel -n 20 http://mirrors.hust.edu.cn/apache/cassandra/3.10/apache-cassandra-3.10-bin.tar.gz
tar xzvf apache-cassandra-3.10-bin.tar.gz 
cd apache-cassandra-3.10/
ls
bin/cassandra -f
bin/cassandra(后台)
ps -ef|grep cassandra
history 

pycassa安装

~/.pip/pip.conf 
[global]
index-url = http://pypi.douban.com/simple/
sudo pip install pycassa

cassandra初识

Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 3.10 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.
cqlsh> help

Documented shell commands:
===========================
CAPTURE  CLS          COPY  DESCRIBE  EXPAND  LOGIN   SERIAL  SOURCE   UNICODE
CLEAR    CONSISTENCY  DESC  EXIT      HELP    PAGING  SHOW    TRACING

CQL help topics:
================
AGGREGATES               CREATE_KEYSPACE           DROP_TRIGGER      TEXT     
ALTER_KEYSPACE           CREATE_MATERIALIZED_VIEW  DROP_TYPE         TIME     
ALTER_MATERIALIZED_VIEW  CREATE_ROLE               DROP_USER         TIMESTAMP
ALTER_TABLE              CREATE_TABLE              FUNCTIONS         TRUNCATE 
ALTER_TYPE               CREATE_TRIGGER            GRANT             TYPES    
ALTER_USER               CREATE_TYPE               INSERT            UPDATE   
APPLY                    CREATE_USER               INSERT_JSON       USE      
ASCII                    DATE                      INT               UUID     
BATCH                    DELETE                    JSON            
BEGIN                    DROP_AGGREGATE            KEYWORDS        
BLOB                     DROP_COLUMNFAMILY         LIST_PERMISSIONS
BOOLEAN                  DROP_FUNCTION             LIST_ROLES      
COUNTER                  DROP_INDEX                LIST_USERS      
CREATE_AGGREGATE         DROP_KEYSPACE             PERMISSIONS     
CREATE_COLUMNFAMILY      DROP_MATERIALIZED_VIEW    REVOKE          
CREATE_FUNCTION          DROP_ROLE                 SELECT          
CREATE_INDEX             DROP_TABLE                SELECT_JSON     

cqlsh> help CREATE_KEYSPACE
cqlsh> Created new window in existing browser session.

基础

Cassandra是一个开源的分布式数据库,结合了Dynamo的Key/Value与Bigtable的面向列的特点。

Cassandra的特点如下:

1.灵活的schema:不需要象数据库一样预先设计schema,增加或者删除字段非常方便(on the fly)。

2.支持range查询:可以对Key进行范围查询。

3.高可用,可扩展:单点故障不影响集群服务,可线性扩展。

我们可以将Cassandra的数据模型想象成一个四维或者五维的Hash。

**查看用户下信息:
describe cluster; 

desc cluster; 
 

 
**查看所有keyspace:
describe keyspaces;

desc keyspaces;
 
**查看keyspace内容:
describe keyspace knet; --(knet为键空间)

desc keyspace knet; --(knet为键空间)
 
**创建keyspace:
CREATE KEYSPACE knet WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 };
Replication Factor : 复制因数。 表示一份数据在一个DC 之中包含几份。常用奇数~ 比如我们项目组设置的replication_factor=3
Replica placement strategy : 复制策略。 默认的是SimpleStrategy. 如果是单机架、单数据中心的模式,保持使用SimpleStrtegy即可。
 
**使用keyspace:
use knet ;
**查示所有表:
describe tables; 

desc tables; 
 
**查看表结构:
describe columnfamaliy abc;

desc table stocks
 
**创建表:
create table abc ( id int primary key, name varchar, age int );
 
**表删除:
drop table user;

**COLUMN

Column是Cassandra中最小的数据单元。它是一个3元的数据类型,包含:name,value和timestamp。

将一个Column用JSON的形式表现出来如下:

   1: {  // 这是一个column
   2:     name: "逖靖寒的世界",
   3:     value: "[email protected]",
   4:     timestamp: 123456789
   5: } 
为了简单起见,我们可以忽略timestamp。就把column想象成一个name/value即可。

注意,这里提到的name和value都是byte[]类型的,长度不限。

**SUPERCOLUMN

我们可以将SuperColumn想象成Column的数组,它包含一个name,以及一系列相应的Column。

将一个SuperColumn用JSON的形式表现如下:

   1: {   // 这是一个SuperColumn
   2:     name: "逖靖寒的世界",
   3:     // 包含一系列的Columns
   4:     value: {
   5:         street: {name: "street", value: "1234 x street", timestamp: 123456789},
   6:         city: {name: "city", value: "san francisco", timestamp: 123456789},
   7:         zip: {name: "zip", value: "94107", timestamp: 123456789},
   8:     }
   9: }
 

Columns和SuperColumns都是name与value的组合。最大的不同在于Column的value是一个“string”,而SuperColumn的value是Columns的Map。

还有一点需要注意的是:SuperColumn’本身是不包含timestamp的。

**COLUMNFAMILY

ColumnFamily是一个包含了许多Row的结构,你可以将它想象成RDBMS中的Table。

每一个Row都包含有client提供的Key以及和该Key关联的一系列Column。

我们可以看看结构:

   1: UserProfile = { // 这是一个ColumnFamily
   2:     phatduckk: {   // 这是对应ColumnFamily的key
   3:         // 这是Key下对应的Column
   4:         username: "gpcuster",
   5:         email: "[email protected]",
   6:         phone: "6666"
   7:     }, // 第一个row结束
   8:     ieure: {   // 这是ColumnFamily的另一个key
   9:         //这是另一个Key对应的column
  10:         username: "pengguo",
  11:         email: "[email protected]",
  12:         phone: "888"
  13:         age: "66"
  14:     },
  15: }
ColumnFamily的类型可以为Standard,也可以是Super类型。

我们刚刚看到的那个例子是一个Standard类型的ColumnFamily。Standard类型的ColumnFamily包含了一系列的Columns(不是SuperColumn)。

Super类型的ColumnFamily包含了一系列的SuperColumn,但是并不能像SuperColumn那样包含一系列Standard ColumnFamily。

这是一个简单的例子:

   1: AddressBook = { // 这是一个Super类型的ColumnFamily
   2:     phatduckk: {    // key
   3:         friend1: {street: "8th street", zip: "90210", city: "Beverley Hills", state: "CA"}, 
   4:         John: {street: "Howard street", zip: "94404", city: "FC", state: "CA"},
   5:         Kim: {street: "X street", zip: "87876", city: "Balls", state: "VA"},
   6:         Tod: {street: "Jerry street", zip: "54556", city: "Cartoon", state: "CO"},
   7:         Bob: {street: "Q Blvd", zip: "24252", city: "Nowhere", state: "MN"},
   8:         ...
   9:     }, // row结束
  10:     ieure: {     // key
  11:         joey: {street: "A ave", zip: "55485", city: "Hell", state: "NV"},
  12:         William: {street: "Armpit Dr", zip: "93301", city: "Bakersfield", state: "CA"},
  13:     },
  14: }
KEYSPACE

Keyspace是我们的数据最外层,你所有的ColumnFamily都属于某一个Keyspace。一般来说,我们的一个程序应用只会有一个Keyspace。

简单测试

我们将Cassandra运行起来以后,启动命令行,执行如下操作:

cassandra> set Keyspace1.Standard1['jsmith']['first'] = 'John' 
Value inserted. 
cassandra> set Keyspace1.Standard1['jsmith']['last'] = 'Smith' 
Value inserted. 
cassandra> set Keyspace1.Standard1['jsmith']['age'] = '42' 
Value inserted.

这个时候,Cassandra中就已经有3条数据了。

其中插入数据的各个字段含义如下:

image

接下来,我们执行查询操作:

cassandra> get Keyspace1.Standard1['jsmith'] 
  (column=age, value=42; timestamp=1249930062801) 
  (column=first, value=John; timestamp=1249930053103) 
  (column=last, value=Smith; timestamp=1249930058345) 
Returned 3 rows.

这样,我们就可以将之前插入的数据查询出来了。

排序

有一点需要明确,我们使用Cassandra的时候,数据在写入的时候就已经排好顺序了。

在某一个Key内的所有Column都是按照它的Name来排序的。我们可以在storage-conf.xml文件中指定排序的类型。

目前Cassandra提供的排序类型有:BytesType, UTF8Type,LexicalUUIDType, TimeUUIDType, AsciiType,和LongType。

现在假设你的原始数据如下:

{name: 123, value: "hello there"}, 
{name: 832416, value: "kjjkbcjkcbbd"}, 
{name: 3, value: "101010101010"}, 
{name: 976, value: "kjjkbcjkcbbd"}

当我们storage-conf.xml文件中指定排序的类型为LongType时:

 


排序后的数据就是这样的:

{name: 3, value: "101010101010"},   
{name: 123, value: "hello there"}, 
{name: 976, value: "kjjkbcjkcbbd"}, 
{name: 832416, value: "kjjkbcjkcbbd"}

如果我们指定排序的类型为UTF8Type

 


排序后的数据就是这样的:

{name: 123, value: "hello there"},    
{name: 3, value: "101010101010"}, 
{name: 832416, value: "kjjkbcjkcbbd"}, 
{name: 976, value: "kjjkbcjkcbbd"}

大家可以看到,指定的排序类型不一样,排序的结果也是完全不同的。

对于SuperColumn,我们有一个额外的排序维度,所以我们可以指定CompareSubcolumnsWith来进行另一个维度的排序类型。

假设我们的原始数据如下:

{ // first SuperColumn from a Row 
    name: "workAddress", 
    // and the columns within it 
    value: { 
        street: {name: "street", value: "1234 x street"}, 
        city: {name: "city", value: "san francisco"}, 
        zip: {name: "zip", value: "94107"} 
    } 
}, 
{ // another SuperColumn from same Row 
    name: "homeAddress", 
    // and the columns within it 
    value: { 
        street: {name: "street", value: "1234 x street"}, 
        city: {name: "city", value: "san francisco"}, 
        zip: {name: "zip", value: "94107"} 
    } 
}

然后我们定义CompareSubcolumnsWith和CompareWith的排序类型都是UTF8Type,那么排序后的结果为:

{ 
    // this one's first b/c when treated as UTF8 strings 
    { // another SuperColumn from same Row 
        // This Row comes first b/c "homeAddress" is before "workAddress"            
        name: "homeAddress", 
        // the columns within this SC are also sorted by their names too 
        value: { 
            // see, these are sorted by Column name too 
            city: {name: "city", value: "san francisco"},                
            street: {name: "street", value: "1234 x street"}, 
            zip: {name: "zip", value: "94107"} 
        } 
    },        
    name: "workAddress", 
    value: { 
        // the columns within this SC are also sorted by their names too 
        city: {name: "city", value: "san francisco"},            
        street: {name: "street", value: "1234 x street"}, 
        zip: {name: "zip", value: "94107"} 
    } 
}

练手

cqlsh> desc keyspaces;

knet  system_schema  system_auth  system  system_distributed  system_traces

cqlsh> CREATE KEYSPACE knet WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 };
cqlsh> use knet;
cqlsh:knet> desc tables;



cqlsh:knet> create table userUser ( id int primary key, name varchar, age int );
cqlsh:knet> desc table userUser;

CREATE TABLE knet.useruser (
    id int PRIMARY KEY,
    age int,
    name text
) WITH bloom_filter_fp_chance = 0.01
    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}
    AND comment = ''
    AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy', 'max_threshold': '32', 'min_threshold': '4'}
    AND compression = {'chunk_length_in_kb': '64', 'class': 'org.apache.cassandra.io.compress.LZ4Compressor'}
    AND crc_check_chance = 1.0
    AND dclocal_read_repair_chance = 0.1
    AND default_time_to_live = 0
    AND gc_grace_seconds = 864000
    AND max_index_interval = 2048
    AND memtable_flush_period_in_ms = 0
    AND min_index_interval = 128
    AND read_repair_chance = 0.0
    AND speculative_retry = '99PERCENTILE';

cqlsh:knet> 

正式(严肃脸

import pycassa
from pycassa.pool import ConnectionPool
pool = ConnectionPool('idmapping', ['localhost:9160'])
from pycassa.pool import ConnectionPool
from pycassa.columnfamily import ColumnFamily
pool = ConnectionPool('idmapping')
col_fam = ColumnFamily(pool, 'imeitoimsi')

你可能感兴趣的:(cassandra)