10分钟快速入门PyTorch (7)

上一节中我们介绍了LSTM如何处理图像分类问题,本质上是将图像看成一个序列做处理,但是RNN的长处并不是做图像分类,而是做自然语言处理,所以这一节我们将讲一下pytorch下RNN如何做自然语言处理。

Word Embedding

在自然语言处理中词向量是很重要的,首先介绍一下词向量。

之前做分类问题的时候大家应该都还记得我们会使用one-hot编码,比如一共有5类,那么属于第二类的话,它的编码就是(0, 1, 0, 0, 0),对于分类问题,这样当然特别简明,但是对于单词,这样做就不行了,比如有1000个不同的词,那么使用one-hot这样的方法效率就很低了,所以我们必须要使用另外一种方式去定义每一个单词,这就引出了word embedding。

我们可以先举三个例子,比如

  • The cat likes playing ball.
  • The kitty likes playing wool.
  • The dog likes playing ball.
  • The boy likes playing ball.

假如我们使用一个二维向量(a, b)来定义一个词,其中a,b分别代表这个词的一种属性,比如a代表是否喜欢玩飞盘,b代表是否喜欢玩毛线,并且这个数值越大表示越喜欢,这样我们就可以区分这三个词了,为什么呢?

比如对于cat,它的词向量就是(-1, 4),对于kitty,它的词向量就是(-2, 5),对于dog,它的词向量就是(3, -2),对于boy,它的词向量就是(-2, -3),我们怎么去定义他们之间的相似度呢,我们可以通过他们之间的夹角来定义他们的相似度。

10分钟快速入门PyTorch (7)_第1张图片
1

上面这张图就显示出了不同的词之间的夹角,我们可以发现kitty和cat是非常相似的,而dog和boy是不相似的。

而对于一个词,我们自己去想它的属性不是很困难吗,所以这个时候就可以交给神经网络了,我们只需要定义我们想要的维度,比如100,然后通过神经网络去学习它的每一个属性的大小,而我们并不用关心到底这个属性代表着什么,我们只需要知道词向量的夹角越小,表示他们之间的语义更加接近。

下面我们使用pytorch来实现一个word embedding

Code

在pytorch里面word embedding实现是通过一个函数来实现的nn.Embedding

word_to_ix = {'hello': 0, 'world': 1}
embeds = nn.Embedding(2, 5)
hello_idx = torch.LongTensor([word_to_ix['hello']])
hello_idx = Variable(hello_idx)
hello_embed = embeds[hello_idx]
print(hello_embed)
2

这就是我们输出的hello这个词的word embedding,下面我们一步一步来解释一下代码

首先我们需要word_to_ix = {'hello': 0, 'world': 1},每个单词我们需要用一个数字去表示他,这样我们需要hello的时候,就用0来表示它。

接着就是word embedding的定义nn.Embedding(2, 5),这里的2表示有2个词,5表示5维,其实也就是一个2x5的矩阵,所以如果你有1000个词,每个词希望是100维,你就可以这样建立一个word embedding,nn.Embedding(1000, 100)。如何访问每一个词的词向量是下面两行的代码,注意这里的词向量的建立只是初始的词向量,并没有经过任何修改优化,我们需要建立神经网络通过learning的办法修改word embedding里面的参数使得word embedding每一个词向量能够表示每一个不同的词。

hello_idx = torch.LongTensor([word_to_ix['hello']])
hello_idx = Variable(hello_idx)

接着这两行代码表示得到一个Variable,它的值是hello这个词的index,也就是0。这里要特别注意一下我们需要Variable,因为我们需要访问nn.Embedding里面定义的元素,并且word embeding算是神经网络里面的参数,所以我们需要定义Variable。

hello_embed = embeds(hello_idx)这一行表示得到word embedding里面关于hello这个词的初始词向量,最后我们就可以print出来。

以上我们介绍了word embeding在pytorch里面是如何实现的,下一节我们将介绍如何用word embedding结合n gram模型进行简单的预测。


本文代码已经上传到了github上

欢迎查看我的知乎专栏,深度炼丹

欢迎访问我的博客

你可能感兴趣的:(10分钟快速入门PyTorch (7))