OpenCV 3 & Keras 实现多目标车辆跟踪

随着计算机技术的飞速发展以及视频采集设备的大规模应用,对于计算机视觉的研究也受到越来越多的关注。目标跟踪作为计算机视觉领域中的关键技术之一,被广泛地应用于军事制导,视觉导航,机器人,智能交通,公共安全等领域。在本文中我使用了三种算法综合实现了对多车辆的跟踪任务。

Github:https://github.com/xiaochus/Vehicle_Tracking
PS:文章中代码可能不够完全,完整的代码结构参考github给出的文件。

算法

  • 目标检测: MOG2
  • 目标跟踪: KCF
  • 物体分类: CNN

环境

  • Python 3.6
  • OpenCV 3.2 + contrib
  • Tensorflow-gpu 1.0
  • Keras 1.2

目标检测

我们使用MOG2进行当前帧的目标检测任务。MOG2是一种背景减除算法,在之前的文章中进行了介绍。目标检测的代码如下所示:

import sys
import copy
import argparse
import cv2
import numpy as np
from keras.models import load_model

from utils.entity import Entity


camera = cv2.VideoCapture(video)
res, frame = camera.read()
y_size = frame.shape[0]
x_size = frame.shape[1]

# 导入CNN分类模型
model = load_model('model//weights.h5')

bs = cv2.createBackgroundSubtractorMOG2(detectShadows=True)    # 定义MOG2
history = 20    # MOG2训练使用的帧数
frames = 0      # 当前帧数
counter = 0     # 当前目标id

cv2.namedWindow("detection", cv2.WINDOW_NORMAL)
while True:
    res, frame = camera.read()

    if not res:
        break
    # 使用前20帧训练MOG2
    fg_mask = bs.apply(frame)

    if frames < history:
        frames += 1
        continue
    # 对帧图像进行膨胀与去噪声操作
    th = cv2.threshold(fg_mask.copy(), 244, 255, cv2.THRESH_BINARY)[1]
    th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=2)
    dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 3)), iterations=2)
    # 获得目标位置
    image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

在遍历检测框时,我们使用面积3000作为阈值对检测框进行过滤,去掉过小的检测框,以减轻分类模型运行的次数。
在提取目标之后,我们先对其进行重置大小,去均值等操作,然后将其送入CNN模型,判断是否为车辆。如果当前目标为车辆,那么就与跟踪列表中的对象进行对比。这里我们对比两者的IOU,即重叠度,只有当前目标与列表中所有的目标的重叠度都很小时,才会将当前目标加入跟踪列表。

for c in contours:
    x, y, w, h = cv2.boundingRect(c)
        if cv2.contourArea(c) > 3000:
        # 提取目标
        img = frame[y: y + h, x: x + w, :]
        rimg = cv2.resize(img, (64, 64), interpolation=cv2.INTER_CUBIC)
        image_data = np.array(rimg, dtype='float32')
        image_data /= 255.
        roi = np.expand_dims(image_data, axis=0)
        # 分类
        flag = model.predict(roi)

        if flag[0][0] > 0.5:
             e = Entity(counter, (x, y, w, h), frame)
             # 排除重复目标
             if track_list:
                  count = 0
                  num = len(track_list)
                   for p in track_list:
                        if overlap((x, y, w, h), p.windows) < iou:
                            count += 1
                    if count == num:
                        track_list.append(e)
                else:
                        track_list.append(e)
                counter += 1

矩形框重叠度函数:

def overlap(box1, box2):
    """
    检查两个矩形框的重叠程度.
    """
    endx = max(box1[0] + box1[2], box2[0] + box2[2])
    startx = min(box1[0], box2[0])
    width = box1[2] + box2[2] - (endx - startx)

    endy = max(box1[1] + box1[3], box2[1] + box2[3])
    starty = min(box1[1], box2[1])
    height = box1[3] + box2[3] - (endy - starty)

    if (width <= 0 or height <= 0):
        return 0
    else:
        Area = width * height
        Area1 = box1[2] * box1[3]
        Area2 = box2[2] * box2[3]
        ratio = Area / (Area1 + Area2 - Area)

        return ratio

在处理完新的物体后,我们对跟踪列表中的对象进行处理。如果对象的中心接近帧边界,那么就将其从列表中移除。如果没有,那么就对该对象进行更新操作,激活其跟踪器。

if track_list:
    tlist = copy.copy(track_list)
        for e in tlist:
            x, y = e.center
            if 10 < x < x_size - 10 and 10 < y < y_size - 10:
                e.update(frame)
            else:
                track_list.remove(e)

目标跟踪

KCF(kernelized correlation filters),全称核相关滤波,是一种鉴别式追踪方法。这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器。而在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,当然越靠近目标的区域为正样本的可能性越大。

我们定义了一个实体类,该类为每一个被检测到的物体实例化一个对象。对象实例化时会初始化一个KCF跟踪器。KCF跟踪器接受一个帧与目标的坐标位置。通过update()函数载入最新的帧,KCF跟踪器能够计算目标在当前帧中所处的位置。

# coding:utf8

import cv2
import numpy as np


class Entity(object):
    def __init__(self, vid, windows, frame):
        self.vid = vid
        self.windows = windows
        self.center = self._set_center(windows)
        self.trajectory = [self.center]
        self.tracker = self._init_tracker(windows, frame)

    def _set_center(self, windows):
        x, y, w, h = windows
        x = (2 * x + w) / 2
        y = (2 * y + h) / 2
        center = np.array([np.float32(x), np.float32(y)], np.float32)
        return center

    def _init_tracker(self, windows, frame):
    """
    初始化KCF跟踪器
    """
        x, y, w, h = windows
        tracker = cv2.Tracker_create('KCF')
        tracker.init(frame, (x, y, w, h))
        return tracker

    def update(self, frame):
    """
    更新目标位置
    """
        self.tracker.update(frame)
        ok, new_box = self.tracker.update(frame)
        if ok:
            x, y, w, h = int(new_box[0]), int(new_box[1]), int(new_box[2]), int(new_box[3])
            self.center = self._set_center((x, y, w, h))
            self.windows = (x, y, w, h)
            self.trajectory.append(self.center)
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 1)
            cv2.putText(frame, "vehicle", (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1, cv2.LINE_AA)
            cv2.polylines(frame, [np.int32(self.trajectory)], 0, (0, 0, 255))

分类数据

我们使用MIT的车辆与行人数据训练分类模型,数据为ppm格式,大小分别为128X128与128X64。为了使用数据统一并且符合CNN模型的输入,我们对其进行了处理操作,统一了大小。

# coding: utf8

import os
import cv2


def main():
    path1 = 'cars128x128//'
    path2 = 'pedestrians128x64//'
    path3 = 'data//train//cars//'
    path4 = 'data//train//pedestrians//'

    for root, dirs, files in os.walk(path1):
        for f in files:
            n = f.split('.')[0]
            img = path1 + f
            image = cv2.imread(img)
            resized_image = cv2.resize(image, (64, 64), interpolation=cv2.INTER_CUBIC)
            cv2.imwrite(path3 + str(n) + '.jpg', resized_image)

    for root, dirs, files in os.walk(path2):
        for f in files:
            n = f.split('.')[0]
            img = path2 + f
            image = cv2.imread(img)
            resized_image = cv2.resize(image, (64, 64), interpolation=cv2.INTER_CUBIC)
            cv2.imwrite(path4 + str(n) + '.jpg', resized_image)


if __name__ == '__main__':
    main()

点击下载原始数据与处理好的数据。

CNN分类模型

我们使用了3层的CNN网络作为分类模型,每个卷积单元由卷积层、BN层、LeakyRelu与池化层组成。如下图:


OpenCV 3 & Keras 实现多目标车辆跟踪_第1张图片
model.png

CNN网络使用Keras进行定义,如下:

# coding: utf8

from keras.models import Sequential
from keras.regularizers import l2
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU


def cnn_net(size):
    model = Sequential()
    model.add(Convolution2D(16, 5, 5, W_regularizer=l2(5e-4), border_mode='same', input_shape=(size, size, 3)))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha=0.1))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Convolution2D(32, 5, 5, W_regularizer=l2(5e-4), border_mode='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha=0.1))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(5e-4), border_mode='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha=0.1))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=['accuracy'])

    return model

数据增强与模型训练

Keras提供了数据增强的功能,能够增加数据量并且防止过拟合。使用ImageDataGenerator能够将文件夹中的原始数据转化为生成器,供模型使用。

import os
import sys
import argparse
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping
from keras.utils.visualize_util import plot

def data_process(size, batch_size_train, batch_size_val):
    path = os.path.abspath(os.path.join(os.path.dirname("__file__"), os.path.pardir))
 
    datagen1 = ImageDataGenerator(
        rescale=1. / 255,
        shear_range=0.2,
        zoom_range=0.2,
        rotation_range=90,
        width_shift_range=0.2,
        height_shift_range=0.2,
        horizontal_flip=True)

    datagen2 = ImageDataGenerator(rescale=1. / 255)

    train_generator = datagen1.flow_from_directory(
        path + '//data//train',
        target_size=(size, size),
        batch_size=batch_size_train,
        class_mode='binary')

    validation_generator = datagen2.flow_from_directory(
        path + '//data//validation',
        target_size=(size, size),
        batch_size=batch_size_val,
        class_mode='binary')

    return train_generator, validation_generator

模型训练函数如下所示,我们在训练的过程中引入了EarlyStopping,保证模型在准确度不再上升的时候自动结束训练。

def train(model, epochs, batch_size_train, batch_size_val, size):
    train_generator, validation_generator = data_process(size, batch_size_train, batch_size_val)
    earlyStopping = EarlyStopping(monitor='val_loss', patience=50, verbose=1, mode='auto')

    hist = model.fit_generator(
        train_generator,
        nb_epoch=epochs,
        samples_per_epoch=batch_size_train,
        validation_data=validation_generator,
        nb_val_samples=batch_size_val,
        callbacks=[earlyStopping])

    df = pd.DataFrame.from_dict(hist.history)
    df.to_csv('hist.csv', encoding='utf-8', index=False)
    model.save('weights.h5')

结果

运行下列命令,即可对video文件夹中保存的文件进行处理。
python track.py --file "car.flv"

效果如下图所示:


OpenCV 3 & Keras 实现多目标车辆跟踪_第2张图片
show.png

你可能感兴趣的:(OpenCV 3 & Keras 实现多目标车辆跟踪)