单链表
1.删除单链表中的指定节点:
public static void deleteNode(Node head,Node node){
//删除尾节点,采用顺序查找找到尾节点的前一节点
if(node.next == null){
while(head.next!=node){
head = head.next;
}
head.next = null;
}
//要删除的节点是头结点
else if(head==node){
head = null;
}
//要删除的节点是中间的普通节点
else{
Node q = node.next;
node.data = q.data;
node.next = q.next;
}
}
2.单链表中删除指定数值的节点方法一:利用栈
public Node removeValue1(Node head,int num){
Stack stack = new Stack();
while(head !=null){
if(head.data!=null){
stack.push(head);
}
head = head.next;
}
while(!stack.isEmpty()){
stack.peek().next = head;
head = stack.pop();
}
return head;
}
3.单链表中删除指定数值的节点方法二:不利用栈
public Node removeValue2(Node head,int num){
while(head!= null){
if(head.data!=null){
break;
}
head = head.next;
}
Node pre = head;
Node cur = head;
while(cur!=null){
if(cur.data == num){
pre.next = cur.next;
}else{
pre = cur;
}
cur = cur.next;
}
return head;
}
4.删除单链表中数值重复出现的节点
public void deleteDuplication(Node head){
if(head == null){
return ;
}
HashSet set = new HashSet();
Node pre = head;
Node cur = head.next;
set.add(head.data);
while(cur!=null){
if(set.contains(cur.data)){
pre.next = cur.next;
}else{
set.add(cur.data);
pre = cur;
}
cur = cur.next;
}
}
5.两个单链表生成相加链表
public Node addList2(Node head1,Node head2){
Stack stack1 = new Stack();
Stack stack2 = new Stack();
while(head1!= null){
stack1.push(head1.data);
head1 = head1.next;
}
while(head2!= null){
stack2.push(head2.data);
head2 = head2.next;
}
int n1 = 0;//链表1的数值
int n2 = 0;//链表2的数值
int n = 0;//n1+n2+ca
int ca = 0;//进位
Node node = nul;//当前节点
Node pnode= null;//当前节点的前驱节点
while(!stack1.isEmpty()||!stack2.isEmpty()){
n1 = stack1.isEmpty()?0:stack1.pop();
n2 = stack2.isEmpty()?0:stack2.pop();
n = n1+n2+ca;
node = new Node(n%10);
node.next = pnode;
pnode = node;
ca = n/10;
}
if(ca == 1){
pnode = node;
node = new Node(n/10);
node.next = pnode;
}
return node;
}
6.判断一个单链表是否为回文结构(1221反转1221是回文结构,1234反转4321不是回文结构)
public boolean isPalindeome1(Node head){
if(head == null){
retrun false;
}
Stack stack = new Stack();//记住这个地方不是cur.next不然最后一个节点没有压入栈
Node cur = head;
while(cur!=null){
stack.push(cur);
cur = cur.next;
}
while(head.next!=null){
if(head.data != stack.pop().data){
return false;
}
head = head.next;
}
return true;
}
7.删除单链表的倒数第k个节点
public static Node removeLastKthNode(Node head,int k){
if(k<=0||head == null){
return head;
}
Node p = head;
for(int i = 0; i
8.通过两个栈来实现一个队列
栈 先进后出;队列 先进先出
public class QueueWithStack{
private static Stack
9.设计含最小函数min()的栈,要求min,push,pop的时间复杂度都是0(1),min方法的作用是::就能返回是栈中的最小值
public class MinStack{
Stack stack = new Stack();//用来存储数据的栈
Stack minStack = new Stack();//用来存储最小数据的栈
//添加数据,首先是王stack栈中添加,如果最小minStack为空,或者栈顶的元素
//比新添加的元素要大,则将新元素也要添加到辅助栈中
public void push(int code){
stack.push(node);
if(minStack.isEmpty()||((int)minStack.peek())>=node){
minStack.push(node);
}
}
//如果stack空,直接返回
//如果stack不为空,得到栈顶元素,同时栈顶元素弹出
//如果最小栈的栈顶元素与stack弹出的元素相等,那么最小站也要将其弹出
public void pop(){
if(stack.isEmpty()){
return;
}
int node = (int)stack.peek();
stack.pop();
if((int)minStack.peek()==node){
minStack.pop();
}
}
//查看栈的最小元素
public int min(){
return (int)minStack.peek();
}
}
10.分层遍历二叉树,宽度优先遍历
public static void levelTraversal(Treenode root){
if(root == null){
return;
}
LinkedList queue = new LinkedList();
queue.push(root);
while(!queue.isEmpty()){
TreeNode cur = queue,removeFirst();
System.out.print(cur.val+"");
if(cur.left!=null){
queue.add(cur.left);
}
if(cur.right!=null){
queue.add(cur.right);
}
}
}
11.分层便利应用:按层打印二叉树
public ArrayList printFromTopToBottom(TreeNode root){
ArrayList list = new ArrayList ;
Queue queue = new ArrayBlockingQueue<>(100);
TreeNode last = root;//当前行的最后节点
TreeNode nLast = root;//下一行的最右节点
queue.add(root);
while(!queue.isEmpty()){
TreeNode out = queue.poll();
System.out.print(out.val+"");
list.add(out.val);
if(out.left !=null){
queue.add(out.left);
nLast = out.left;
}
if(out.right !=null){
queue.add(out.right);
nLast = out.right;
}
if(out==last){
System.out.print("");
last = nLast;
}
}
return list;
}
12.前序遍历
//(递归)
public static void preorderTraversalRec(TreeNode root){
if(root == null){
return;
}
System.out.print(root.val+" ");
preorderTraversalRec(root.left);
preorderTraversalRec(root.right);
}
//(迭代)
public static void preorderTraversal(TreeNode root){
if(root == null){
return;
}
Stack stack = new Stack();
stack.push(root);
while(!stack.isEmpty()){
TreeNode cur = stack.pop();//出栈栈顶元素
System.out.print(cur.val+" ");
//关键点,要先压入右孩子,再压入左孩子,这样在出栈时会先打印左孩子再打印右孩子
if(cur.right!=null){
stack.push(cur.right);
}
if(cur.left!=null){
stack.push(cur.left);
}
}
}
13.中序遍历算法
//递归
public static void inorderTraversalRec(TreeNode root){
if(root == null){
return;
}
inorderTraversalRec(root.left);
System.out.print(root.val+" ");
inorderTraversalRec(root.right);
}
//迭代
public static void inorderTraversal(TreeNode root){
if(root == null){
return;
}
Stack stack = new Stack();
TreeNode cur = root;
if(cur!=null){
while(!stack.isEmpty()||cur!=null){
if(cur!=null){
stack.push(cur);
cur = cur.left;
}else{
cur = stack.pop();
System.out.print(cur.val+" ");
cur = cur.right;
}
}
}
}
14.后序遍历算法(迭代)
public static void postorderTraversal(TreeNode root){
if(root == null){
return;
}
Stack s = new Stack();//第一个stack用于添加node和他的左右孩子
Stack output = new Stack();//第二个stack用于翻转第一个stack输出
s.push(root);
while(!s.isEmpty()){//确保所有元素都被翻转到第二个stack
TreeNode cur = s.pop();//把栈顶元素添加到第二个stack中
output.push(cur);
if(cur.left!=null){//把栈顶元素的左右孩子分别添加入第一个stack
s.push(cur.left);
}
if(cur.right!=null){//把栈顶元素的左右孩子分别添加入第一个stack
s.push(cur.right);
}
}
while(!output.isEmpty()){//遍历输出第二个stack,即为后序遍历
System.out.print(output.pop().val+" ");
}
}