阿飞Javaer,转载请注明原创出处,谢谢!
继续以sharding-jdbc-example-jdbc
模块中的com.dangdang.ddframe.rdb.sharding.example.jdbc.Main
为基础,剖析分库分表简单查询SQL实现--printSimpleSelect(dataSource);
,即如何执行简单的查询SQL,接下来的分析以执行SQL语句"SELECT o.* FROM t_order o where o.user_id=? AND o.order_id=?"
为例;
单表查询
Main中printSimpleSelect()
方法调用preparedStatement.executeQuery()
,即调用ShardingPreparedStatement中的executeQuery()
方法,核心源码如下:
@Override
public ResultSet executeQuery() throws SQLException {
ResultSet result;
try {
// 核心方法route(),即解析SQL如何路由执行
Collection preparedStatementUnits = route();
// 根据路由信息执行SQL
List resultSets = new PreparedStatementExecutor(
getConnection().getShardingContext().getExecutorEngine(), routeResult.getSqlStatement().getType(), preparedStatementUnits, getParameters()).executeQuery();
// 对返回的结果进行merge合并
result = new ShardingResultSet(resultSets, new MergeEngine(resultSets, (SelectStatement) routeResult.getSqlStatement()).merge());
} finally {
clearBatch();
}
currentResultSet = result;
return result;
}
通过上面的源码可知,SQL查询两个核心:路由和结果合并,接下来一一分析sharding-jdbc如何实现;
单表查询之路由
接下来分析下面这段代码是如何取得路由信息的:
Collection preparedStatementUnits = route();
route()
核心源码如下:
private Collection route() throws SQLException {
Collection result = new LinkedList<>();
// 调用PreparedStatementRoutingEngine中的route()方法,route()方法调用sqlRouter.route(logicSQL, parameters, sqlStatement)
routeResult = routingEngine.route(getParameters());
for (SQLExecutionUnit each : routeResult.getExecutionUnits()) {
SQLType sqlType = routeResult.getSqlStatement().getType();
Collection preparedStatements;
if (SQLType.DDL == sqlType) {
preparedStatements = generatePreparedStatementForDDL(each);
} else {
preparedStatements = Collections.singletonList(generatePreparedStatement(each));
}
routedStatements.addAll(preparedStatements);
for (PreparedStatement preparedStatement : preparedStatements) {
replaySetParameter(preparedStatement);
result.add(new PreparedStatementUnit(each, preparedStatement));
}
}
return result;
}
SQLRouter接口有两个实现类:DatabaseHintSQLRouter和ParsingSQLRouter,由于这里没有用hint语法强制执行某个库,所以调用ParsingSQLRouter中的route()方法:
private RoutingResult route(final List
接下来分析一下SimpleRoutingEngine和ComplexRoutingEngine;
SimpleRoutingEngine
执行SQL:"SELECT o.* FROM t_order o where o.user_id=? AND o.order_id=?"
时,由于SQL中只有一个表(1 == tableNames.size()),所以路由引擎是SimpleRoutingEngine;SimpleRoutingEngine.route()
源码如下:
@Override
public RoutingResult route() {
// 根据逻辑表得到tableRule,逻辑表为t_order;表规则的配置为:.actualTables(Arrays.asList("t_order_0", "t_order_1")),所以有两个实际表;
TableRule tableRule = shardingRule.getTableRule(logicTableName);
// 根据规则先路由数据源:即根据user_id取模路由
Collection routedDataSources = routeDataSources(tableRule);
// routedMap保存路由到的目标数据源和表的结果:key为数据源,value为该数据源下路由到的目标表集合
Map> routedMap = new LinkedHashMap<>(routedDataSources.size());
// 遍历路由到的目标数据源
for (String each : routedDataSources) {
// 再根据规则路由表:即根据order_id取模路由
routedMap.put(each, routeTables(tableRule, each));
}
// 将得到的路由数据源和表信息封装到RoutingResult中,RoutingResult中有个TableUnits类型属性,TableUnits类中有个List tableUnits属性,TableUnit包含三个属性:dataSourceName--数据源名称,logicTableName--逻辑表名称,actualTableName--实际表名称,例如:TableUnit:{dataSourceName:ds_jdbc_1, logicTableName:t_order, actualTableName: t_order_1}
return generateRoutingResult(tableRule, routedMap);
}
数据源路由详细解读:由于数据源的sharding策略为
databaseShardingStrategy(new DatabaseShardingStrategy("user_id", new ModuloDatabaseShardingAlgorithm()))
;且where条件为where o.user_id=? AND o.order_id=?
,即where条件中有user_id,根据取模路由策略,当user_id为奇数时,数据源为ds_jdbc_1;当user_id为偶数时,数据源为ds_jdbc_0;
表路由详细解读:表的sharding策略为tableShardingStrategy(new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm()))
,即where条件中有order_id,根据取模路由策略,当order_id为奇数时,表为t_order_1;当order_id为偶数时,表为t_order_0;
综上所述:最终需要执行的表数量为路由到的数据源个数路由到的实际表个数*;
实例1:where o.order_id=1001 AND o.user_id=10,user_id=10所以路由得到数据源为ds_jdbc_0; order_id=1001,路由得到实际表为t_order_1;那么最终只需在ds_jdbc_0这个数据源中的t_order_1表中执行即可;
实例2:where o.order_id=1000,user_id没有值所以路由得到所有数据源ds_jdbc_0和ds_jdbc_1; order_id=1000,路由得到实际表为t_order_0;那么最终需在ds_jdbc_0和ds_jdbc_1两个数据源中的t_order_0表中执行即可;
实例3:where o.user_id=11,user_id=11所以路由得到数据源为ds_jdbc_1; order_id没有值所以路由得到实际表为t_order_0和t_order_1;那么最终只需在ds_jdbc_1这个数据源中的t_order_0和t_order_1表中执行即可;
ComplexRoutingEngine
待定... ...
单表查询之执行
路由完成后就决定了SQL需要在哪些数据源的哪些实际表中执行,接下来以执行SELECT o.* FROM t_order o where o.user_id=10
为例分析下面这段Java代码sharding-jdbc是如何执行的:
根据前面的路由分析可知,这条SQL会路由到ds_jdbc_0这个数据源中,且在所有实际表([t_order_0, t_order_1])中执行这个SQL;
List resultSets = new PreparedStatementExecutor(
getConnection().getShardingContext().getExecutorEngine(), routeResult.getSqlStatement().getType(), preparedStatementUnits, getParameters()).executeQuery();
执行的核心代码在ExecutorEngine中,核心源码如下:
public List executePreparedStatement(
final SQLType sqlType, final Collection preparedStatementUnits, final List
异步执行核心代码:
private final ListeningExecutorService executorService;
public ExecutorEngine(final int executorSize) {
// 异步执行的线程池是通过google-guava封装的线程池,设置了线程名称为增加了ShardingJDBC-***,增加了shutdown hook--应用关闭时最多等待60秒直到所有任务完成,从而实现优雅停机
executorService = MoreExecutors.listeningDecorator(new ThreadPoolExecutor(
executorSize, executorSize, 0, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(), new ThreadFactoryBuilder().setDaemon(true).setNameFormat("ShardingJDBC-%d").build()));
MoreExecutors.addDelayedShutdownHook(executorService, 60, TimeUnit.SECONDS);
}
private ListenableFuture> asyncExecute(
final SQLType sqlType, final Collection baseStatementUnits, final List> parameterSets, final ExecuteCallback executeCallback) {
// 构造一个存放异步执行后的结果的list
List> result = new ArrayList<>(baseStatementUnits.size());
final boolean isExceptionThrown = ExecutorExceptionHandler.isExceptionThrown();
final Map dataMap = ExecutorDataMap.getDataMap();
for (final BaseStatementUnit each : baseStatementUnits) {
// 线程池方式异步执行所有SQL,线程池在ExecutorEngine的构造方法中初始化;
result.add(executorService.submit(new Callable() {
@Override
public T call() throws Exception {
return executeInternal(sqlType, each, parameterSets, executeCallback, isExceptionThrown, dataMap);
}
}));
}
// google-guava的方法--将所有异步执行结果转为list类型
return Futures.allAsList(result);
}
同步执行核心代码:
private T syncExecute(final SQLType sqlType, final BaseStatementUnit baseStatementUnit, final List> parameterSets, final ExecuteCallback executeCallback) throws Exception {
return executeInternal(sqlType, baseStatementUnit, parameterSets, executeCallback, ExecutorExceptionHandler.isExceptionThrown(), ExecutorDataMap.getDataMap());
}
由同步执行核心代码和异步执行核心代码可知,最终都是调用
executeInternal()
,跟读这个方法的源码可知:最终就是在目标数据库表上执行PreparedStatement
的execute***()
方法;且在执行前会利用google-guava的EventBus发布BEFORE_EXECUTE的事件(执行完成后,如果执行成功还会发布EXECUTE_SUCCESS事件,如果执行失败发布EXECUTE_FAILURE事件),部分核心源码如下:
// 发布事件
List events = new LinkedList<>();
if (parameterSets.isEmpty()) {
// 构造无参SQL的事件(事件类型为BEFORE_EXECUTE)
events.add(getExecutionEvent(sqlType, baseStatementUnit, Collections.emptyList()));
}
for (List
接下来需要对并行执行后得到的结果集进行merge,下面的sharding-jdbc源码分析系列文章继续对其进行分析;
EventBus
说明:EventBus是google-guava提供的消息发布-订阅类库;
google-guava的EventBus正确打开姿势:
- 发布事务:调用EventBus的post()--sharding-jdbc中发布事务:EventBusInstance.getInstance().post(each);
- 订阅事务:调用EventBus的register()--sharding-jdbc中注册事务:EventBusInstance.getInstance().register(new BestEffortsDeliveryListener());
EventBusInstance源码如下--EventBus全类名为com.google.common.eventbus.EventBus
:
@NoArgsConstructor(access = AccessLevel.PRIVATE)
public final class EventBusInstance {
private static final EventBus INSTANCE = new EventBus();
/**
* Get event bus instance.
*
* @return event bus instance
*/
public static EventBus getInstance() {
return INSTANCE;
}
}