Android应用统计-使用时长及次数统计(五)

关键字: 应用统计 Android源码 应用使用时长 应用使用次数

上篇文章讲到BinderService调用了UserUsageStatsService的相关函数接口,实现了应用使用信息的记录。本篇文章主要是根据源码UserUsageStatsService进行解析,介绍关于读取数据的详细流程。

数据的读取

之前的文章曾讲到,不论是Event还是ConfigurationChange,都是调用UserUsageStatsService.reportEvent(event)这一函数,用来记录event和config数据;使用UserUsageStatsService.queryStats()这一函数,进行数据的读取。接下来就会主要讲解关于数据读取部分的代码逻辑。

读取UsageStats

    /**
     * Generic query method that selects the appropriate IntervalStats for the specified time range
     * and bucket, then calls the {@link com.android.server.usage.UsageStatsDatabase.StatCombiner}
     * provided to select the stats to use from the IntervalStats object.
     */
    private  List queryStats(int intervalType, final long beginTime, final long endTime,
            StatCombiner combiner) {

        //如果intervalType==INTERVAL_BEST,则自行根据所给的时间区间,获取最合适的查询类型(按天,周,月或年查询)
        if (intervalType == UsageStatsManager.INTERVAL_BEST) {
            intervalType = mDatabase.findBestFitBucket(beginTime, endTime);
           if (intervalType < 0) {
                // Nothing saved to disk yet, so every stat is just as equal (no rollover has
                // occurred.
                intervalType = UsageStatsManager.INTERVAL_DAILY;
            }
        }

        //查询类型异常的话,则返回null。(查询类型只有4种,即0~3,分别按天,周,月或年查询)
        if (intervalType < 0 || intervalType >= mCurrentStats.length) {
            if (DEBUG) {
                Slog.d(TAG, mLogPrefix + "Bad intervalType used " + intervalType);
            }
            return null;
        }

        // 获取所需查询的IntervalStats
        final IntervalStats currentStats = mCurrentStats[intervalType];

        if (DEBUG) {
            Slog.d(TAG, mLogPrefix + "SELECT * FROM " + intervalType + " WHERE beginTime >= "
                    + beginTime + " AND endTime < " + endTime);
        }
        //如果所查询的时间区间和currentStats记录的时间区间不存在交集,则返回null
        if (beginTime >= currentStats.endTime) {
            if (DEBUG) {
                Slog.d(TAG, mLogPrefix + "Requesting stats after " + beginTime + " but latest is "
                        + currentStats.endTime);
            }
            // Nothing newer available.
            return null;
        }

        // Truncate the endTime to just before the in-memory stats. Then, we'll append the
        // in-memory stats to the results (if necessary) so as to avoid writing to disk too
        // often.
        //截取查询时间段在currentStats的时间区间之前的那一段时间,获取查询结果,以避免过于频繁的读取文件
        final long truncatedEndTime = Math.min(currentStats.beginTime, endTime);

        // Get the stats from disk.    读取文件中的数据
        List results = mDatabase.queryUsageStats(intervalType, beginTime,
                truncatedEndTime, combiner);
        if (DEBUG) {
            Slog.d(TAG, "Got " + (results != null ? results.size() : 0) + " results from disk");
            Slog.d(TAG, "Current stats beginTime=" + currentStats.beginTime +
                    " endTime=" + currentStats.endTime);
        }

        // Now check if the in-memory stats match the range and add them if they do.
        //除了当前内存中的数据读取完成之后,再加上当前内存的数据(注:当前内存的数据都是最新的,这样读取的数据就会按照时间顺序排列)
        if (beginTime < currentStats.endTime && endTime > currentStats.beginTime) {
            if (DEBUG) {
                Slog.d(TAG, mLogPrefix + "Returning in-memory stats");
            }

            if (results == null) {
                results = new ArrayList<>();
            }
            combiner.combine(currentStats, true, results);
        }

        if (DEBUG) {
            Slog.d(TAG, mLogPrefix + "Results: " + (results != null ? results.size() : 0));
       }
        return results;
    }

    List queryUsageStats(int bucketType, long beginTime, long endTime) {
        return queryStats(bucketType, beginTime, endTime, sUsageStatsCombiner);
    }

从上述代码可以得知,数据的读取,主要是调用mDatabase.queryUsageStats()这一函数进行的,这一函数也是从文件读取数据的关键函数。

    /**
     * Find all {@link IntervalStats} for the given range and interval type.
     */
    public  List queryUsageStats(int intervalType, long beginTime, long endTime,
            StatCombiner combiner) {
        synchronized (mLock) {
            //再次检查intervalType 是否合法(额?为什么是再次?  `_`|||)
            if (intervalType < 0 || intervalType >= mIntervalDirs.length) {
                throw new IllegalArgumentException("Bad interval type " + intervalType);
            }

            //按照查询类型,获取所需查找的文件
            final TimeSparseArray intervalStats = mSortedStatFiles[intervalType];

            if (endTime <= beginTime) {
                if (DEBUG) {
                    Slog.d(TAG, "endTime(" + endTime + ") <= beginTime(" + beginTime + ")");
                }
                return null;
            }

           //获取第一个所需查找的文件的文件序号,如果第一个记录的文件记录的时间就已经在查询范围中,则证明所有文件都在查询范围,则从第一个文件开始查起
            int startIndex = intervalStats.closestIndexOnOrBefore(beginTime);
            if (startIndex < 0) {
                // All the stats available have timestamps after beginTime, which means they all
                // match.
                startIndex = 0;
            }
            //获取最后一个所需查找的文件的文件序号,如果第一个记录的文件记录的时间就已经晚于查询的最后时间,则证明所有文件都不在查询范围,则返回null
            int endIndex = intervalStats.closestIndexOnOrBefore(endTime);
            if (endIndex < 0) {
                // All the stats start after this range ends, so nothing matches.
                if (DEBUG) {
                    Slog.d(TAG, "No results for this range. All stats start after.");
                }
                return null;
            }

            //如果查询的endTime刚好是文件记录的开始那一时刻,则不查询最后一个文件,文件数减一
            //因为最后一个文件的开始时间其实只是刚好在endTime这一临界时刻,这一文件的数据都在endTime之后,不需进行读取
            if (intervalStats.keyAt(endIndex) == endTime) {
                // The endTime is exclusive, so if we matched exactly take the one before.
                endIndex--;
                if (endIndex < 0) {
                    // All the stats start after this range ends, so nothing matches.
                    if (DEBUG) {
                        Slog.d(TAG, "No results for this range. All stats start after.");
                    }
                    return null;
                }
            }

            //循环读取文件数据
            try {
                IntervalStats stats = new IntervalStats();
                ArrayList results = new ArrayList<>();
                for (int i = startIndex; i <= endIndex; i++) {
                    final AtomicFile f = intervalStats.valueAt(i);

                    if (DEBUG) {
                        Slog.d(TAG, "Reading stat file " + f.getBaseFile().getAbsolutePath());
                    }

                    UsageStatsXml.read(f, stats);
                    if (beginTime < stats.endTime) {
                        combiner.combine(stats, false, results);
                    }
                }
                return results;
            } catch (IOException e) {
                Slog.e(TAG, "Failed to read usage stats file", e);
                return null;
            }
        }
   }

从上述代码可以得知,循环读取文件使用的是UsageStatsXml.read(AtomicFile file, IntervalStats statsOut)这一函数。其源码如下:

public static void read(AtomicFile file, IntervalStats statsOut) throws IOException {
        try {
            FileInputStream in = file.openRead();
            try {
                statsOut.beginTime = parseBeginTime(file);
                read(in, statsOut);
                statsOut.lastTimeSaved = file.getLastModifiedTime();
            } finally {
                try {
                    in.close();
                } catch (IOException e) {
                    // Empty
                }
            }
        } catch (FileNotFoundException e) {
           Slog.e(TAG, "UsageStats Xml", e);
            throw e;
        }
    }

    private static void read(InputStream in, IntervalStats statsOut) throws IOException {
        XmlPullParser parser = Xml.newPullParser();
        try {
            parser.setInput(in, "utf-8");
            XmlUtils.beginDocument(parser, USAGESTATS_TAG);
            String versionStr = parser.getAttributeValue(null, VERSION_ATTR);
            try {
                switch (Integer.parseInt(versionStr)) {
                    case 1:
                        UsageStatsXmlV1.read(parser, statsOut);
                        break;

                    default:
                        Slog.e(TAG, "Unrecognized version " + versionStr);
                        throw new IOException("Unrecognized version " + versionStr);
                }
            } catch (NumberFormatException e) {
                Slog.e(TAG, "Bad version");
                throw new IOException(e);
            }
        } catch (XmlPullParserException e) {
            Slog.e(TAG, "Failed to parse Xml", e);
            throw new IOException(e);
       }
    }

UsageStatsXml.read(AtomicFile file, IntervalStats statsOut)调用UsageStatsXml.read(InputStream in, IntervalStats statsOut),从中可以发现其关键函数是调用UsageStatsXmlV1.read(parser, statsOut);

    /**
     * Reads from the {@link XmlPullParser}, assuming that it is already on the
     *  tag.
     *
     * @param parser The parser from which to read events.
     * @param statsOut The stats object to populate with the data from the XML file.
     */
    public static void read(XmlPullParser parser, IntervalStats statsOut)
            throws XmlPullParserException, IOException {
        //清空原有的数据
        statsOut.packageStats.clear();
        statsOut.configurations.clear();
        statsOut.activeConfiguration = null;

        if (statsOut.events != null) {
            statsOut.events.clear();
        }

        statsOut.endTime = XmlUtils.readLongAttribute(parser, END_TIME_ATTR);

        int eventCode;
        int outerDepth = parser.getDepth();
        // 循环读取各个节点的数据
        while ((eventCode = parser.next()) != XmlPullParser.END_DOCUMENT
                && (eventCode != XmlPullParser.END_TAG || parser.getDepth() > outerDepth)) {
            if (eventCode != XmlPullParser.START_TAG) {
                continue;
            }

            final String tag = parser.getName();
            switch (tag) {
                case PACKAGE_TAG:
                    loadUsageStats(parser, statsOut);
                    break;

                case CONFIG_TAG:
                    loadConfigStats(parser, statsOut);
                    break;

                case EVENT_TAG:
                    loadEvent(parser, statsOut);
                    break;
            }
        }
    }

如上,循环读取各个节点的数据的时候,根据节点的不同,分别调用loadUsageStats(parser, statsOut),loadConfigStats(parser, statsOut),loadEvent(parser, statsOut),这三个函数将UsageStats,ConfigStats,以及Events分别读取写入statsOut中。
-- 具体写入函数如下:

private static void loadUsageStats(XmlPullParser parser, IntervalStats statsOut)
            throws XmlPullParserException, IOException {
        final String pkg = parser.getAttributeValue(null, PACKAGE_ATTR);
        if (pkg == null) {
            throw new ProtocolException("no " + PACKAGE_ATTR + " attribute present");
        }

        final UsageStats stats = statsOut.getOrCreateUsageStats(pkg);

        // Apply the offset to the beginTime to find the absolute time.
        stats.mLastTimeUsed = statsOut.beginTime + XmlUtils.readLongAttribute(
                parser, LAST_TIME_ACTIVE_ATTR);

        stats.mTotalTimeInForeground = XmlUtils.readLongAttribute(parser, TOTAL_TIME_ACTIVE_ATTR);
        stats.mLastEvent = XmlUtils.readIntAttribute(parser, LAST_EVENT_ATTR);
    }

    private static void loadConfigStats(XmlPullParser parser, IntervalStats statsOut)
            throws XmlPullParserException, IOException {
        final Configuration config = new Configuration();
        Configuration.readXmlAttrs(parser, config);

        final ConfigurationStats configStats = statsOut.getOrCreateConfigurationStats(config);

        // Apply the offset to the beginTime to find the absolute time.
        configStats.mLastTimeActive = statsOut.beginTime + XmlUtils.readLongAttribute(
                parser, LAST_TIME_ACTIVE_ATTR);

        configStats.mTotalTimeActive = XmlUtils.readLongAttribute(parser, TOTAL_TIME_ACTIVE_ATTR);
        configStats.mActivationCount = XmlUtils.readIntAttribute(parser, COUNT_ATTR);
        if (XmlUtils.readBooleanAttribute(parser, ACTIVE_ATTR)) {
            statsOut.activeConfiguration = configStats.mConfiguration;
        }
    }

    private static void loadEvent(XmlPullParser parser, IntervalStats statsOut)
            throws XmlPullParserException, IOException {
       final String packageName = XmlUtils.readStringAttribute(parser, PACKAGE_ATTR);
        if (packageName == null) {
            throw new ProtocolException("no " + PACKAGE_ATTR + " attribute present");
        }

        final String className = XmlUtils.readStringAttribute(parser, CLASS_ATTR);

        final UsageEvents.Event event = statsOut.buildEvent(packageName, className);

        // Apply the offset to the beginTime to find the absolute time of this event.
        event.mTimeStamp = statsOut.beginTime + XmlUtils.readLongAttribute(parser, TIME_ATTR);

        event.mEventType = XmlUtils.readIntAttribute(parser, TYPE_ATTR);
        if (event.mEventType == UsageEvents.Event.CONFIGURATION_CHANGE) {
            event.mConfiguration = new Configuration();
            Configuration.readXmlAttrs(parser, event.mConfiguration);
        }

        if (statsOut.events == null) {
            statsOut.events = new TimeSparseArray<>();
        }
        statsOut.events.put(event.mTimeStamp, event);
    }

以上便是读取UsageStats的主要流程。

读取ConfigurationStats

 List queryConfigurationStats(int bucketType, long beginTime, long endTime) {
        return queryStats(bucketType, beginTime, endTime, sConfigStatsCombiner);
    }

没什么好说的,读取ConfigurationStats采用和UsageStats一样的方式,上文已提到过了,不再一一赘述。

读取Events

    UsageEvents queryEvents(final long beginTime, final long endTime) {
        final ArraySet names = new ArraySet<>();
        List results = queryStats(UsageStatsManager.INTERVAL_DAILY,
                beginTime, endTime, new StatCombiner() {
                   @Override
                    public void combine(IntervalStats stats, boolean mutable,
                           List accumulatedResult) {
                        if (stats.events == null) {
                            return;
                        }

                        final int startIndex = stats.events.closestIndexOnOrAfter(beginTime);
                        if (startIndex < 0) {
                           return;
                        }

                       final int size = stats.events.size();
                        for (int i = startIndex; i < size; i++) {
                            if (stats.events.keyAt(i) >= endTime) {
                                return;
                           }

                           final UsageEvents.Event event = stats.events.valueAt(i);
                            names.add(event.mPackage);
                            if (event.mClass != null) {
                               names.add(event.mClass);
                            }
                            accumulatedResult.add(event);
                        }
                    }
                });

        if (results == null || results.isEmpty()) {
            return null;
        }

        String[] table = names.toArray(new String[names.size()]);
        Arrays.sort(table);
        return new UsageEvents(results, table);
    }

从上述源码可知,查询Events的接口,调用的乃是和查询UsageStats相同的queryStats()函数,具体流程可参见本文上述“查询Stats”相关内容。

结语:

本文主要介绍了关于Android系统中统计各个app的使用情况的解决方案,主要是介绍了在统计数据的时候,读取将写入对应文件的数据这一具体流程,以及写入数据的详细情况。接下来的文章中将会详细阐述如何读取这些记录的数据,并且使用他们。

转载请注明出处。

github:UseTimeStatistic
参考文献:
Android 5.1相关源码目录
Android UsageStatsService:要点解析
Android5.1应用打开次数获取

上一篇:Android应用统计-使用时长及次数统计(四)

你可能感兴趣的:(Android应用统计-使用时长及次数统计(五))