Hive 数据模型


    Hive 数据表有五种类型:内部表,外部表,分区表,桶表,视图表,默认以 tab 分隔

    * MySQL (Oracle) 表默认以逗号分隔,因此,要想导入 MySQL(Oracle) 数据,需要设置分隔符,在建表语句后加:

            row  format   delimited   fields   terminated  by  ',';



    内部表: 相当于 MySQL 中的表,将数据保存到Hive 自己的数据仓库目录中:/usr/hive/warehouse

            例子:

create table emp

(empno int,

ename string,

job string,

mgr int,

hiredate string,

sal int,

comm int,

deptno int

);

导入数据到表中:本地、HDFS

load语句、insert语句

load语句相当于ctrl+X

load data inpath '/scott/emp.csv' into table emp;   ----> 导入HDFS

load data local inpath '/root/temp/***' into table emp;   ----> 导入本地文件

创建表,并且指定分隔符

create table emp1

(empno int,

ename string,

job string,

mgr int,

hiredate string,

sal int,

comm int,

deptno int

)row format delimited fields terminated by ',';

创建部门表,保存部门数据

create table dept

(deptno int,

dname string,

loc string

)row format delimited fields terminated by ',';


load data inpath '/scott/dept.csv' into table dept;

    外部表:相对于内部表,数据不在自己的数据仓库中,只保存数据的元信息

        例子:

(*)实验的数据

[root@bigdata11 ~]# hdfs dfs -cat /students/student01.txt

1,Tom,23

2,Mary,24

[root@bigdata11 ~]# hdfs dfs -cat /students/student02.txt

3,Mike,26

(*)定义:(1)表结构  (2)指向的路径

create external table students_ext

(sid int,sname string,age int)

row format delimited fields terminated by ','

location '/students';


    分区表:将数据按照设定的条件分开存储,提高查询效率,分区----->  目录

        例子:

   

(*)根据员工的部门号建立分区

create table emp_part

(empno int,

ename string,

job string,

mgr int,

hiredate string,

sal int,

comm int

)partitioned by (deptno int)

row format delimited fields terminated by ',';

往分区表中导入数据:指明分区

insert into table emp_part partition(deptno=10) select empno,ename,job,mgr,hiredate,sal,comm from emp1 where deptno=10;

insert into table emp_part partition(deptno=20) select empno,ename,job,mgr,hiredate,sal,comm from emp1 where deptno=20;

insert into table emp_part partition(deptno=30) select empno,ename,job,mgr,hiredate,sal,comm from emp1 where deptno=30;

    桶  表: 本质上也是一种分区表,类似 hash 分区   桶 ----> 文件

        例子:

  创建一个桶表,按照员工的职位job分桶

create table emp_bucket

(empno int,

ename string,

job string,

mgr int,

hiredate string,

sal int,

comm int,

deptno int

)clustered by (job) into 4 buckets

row format delimited fields terminated by ',';

使用桶表,需要打开一个开关

set hive.enforce.bucketing=true;

使用子查询插入数据

insert into emp_bucket select * from emp1;



    视图表:视图表是一个虚表,不存储数据,用来简化复杂的查询

        例子:

                                查询部门名称、员工的姓名

create view myview

as

select dept.dname,emp1.ename

from emp1,dept

where emp1.deptno=dept.deptno;


select * from myview;