- ssl与ipsec的区别
路星辞*
网络网络运维网络协议ipsecssl
ssl与ipsec的区别:1.概念不同:ssl是一种安全协议,可通过Internet安全地发送信息,而ipsec即Internet协议安全性,是为Internet协议提供安全性的一组协议。2.所在层不同:ssl在传输和应用层中工作,而ipsec在Internet层中工作。3.ipsec配置比较复杂,而ssl相对比较简单。4.用法不同:ssl用于保护基于Web的通信/事务,而ipsec用于保护VPN
- 使用synchronized解决高并发场景
小汤猿人类
java开发语言
synchronized能很好的解决高并发所带来的超卖等问题,但是synchronized也有属于它的缺陷,就是只适合单机模式,如果同时开启多个实例,那么还是会出现超卖的情况,下面就介绍一下synchronized使用方法,十分的简单。只需要在高频访问的方法上添加synchronized关键字即可,synchronized能够保证单机情况下一次只有一个线程能够进入方法中执行,这样就很好的解决的高并
- 基于基于强化学习(Q-Learning)用于底层动态频谱接入(DSA)认知无线电网络的资源分配研究(Matlab代码实现)
长安程序猿
网络matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、动态频谱接入(DSA)的基本原理与挑战1.DSA的核心机制2.关键挑战二、Q-Learning在DSA资源分配中的应用框架1.算法原理2.典型应用场景三、关键参数与模型设计1.状态空间定义2.动作空间设计3.奖励函数设计四、研究进展与优化方法1.
- Pytorch实现之粒子群优化算法在GAN中的应用
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络pytorch算法深度学习计算机视觉
简介简介:主要是采用了粒子群优化(PSO)算法来优化GAN的一个训练。PSO是一种是一种基于种群的随机优化技术。这种优化技术是通过粒子群进行的,粒子群在每次迭代中都会更新自己。对于给定的目标函数,这种方法利用一个搜索空间,在那里粒子群移动,找到所需的全局最小值。这些粒子与它们当前的环境局部相互作用,也与彼此相互作用,具有可接受的随机性质。通过合并粒子的当前速度,探索粒子的历史和粒子的邻居,可以知道
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- 【Spring Boot 实现 PDF 导出】
web14786210723
面试学习路线阿里巴巴springbootpdf后端
SpringBoot实现PDF导出在SpringBoot应用程序中实现PDF导出功能,可以选择多种库和技术栈。每种方法都有其优缺点,适用于不同的场景。以下是四种常见的方式:iText、ApachePDFBox、JasperReports和Thymeleaf+FlyingSaucer。我将详细对比这些方法,并提供相应的代码示例。1.iText优点:丰富的API:支持复杂的PDF操作,如加密、数字签名
- 基于图像处理的裂缝检测与特征提取
机器懒得学习
图像处理计算机视觉人工智能
一、引言裂缝检测是基础设施监测中至关重要的一项任务,尤其是在土木工程和建筑工程领域。随着自动化技术的发展,传统的人工巡检方法逐渐被基于图像分析的自动化检测系统所取代。通过计算机视觉和图像处理技术,能够高效、精确地提取裂缝的几何特征,如长度、宽度、方向、面积等,从而为工程质量评估提供数据支持。本文将详细介绍一段用于裂缝检测与特征提取的Python代码,重点讲解其实现的核心算法与关键步骤,分析其应用场
- OSPF协议五种网络类型中DR和BDR选举说明
路星辞*
网络网络智能路由器运维ospf
OSPF协议五种网络类型中DR和BDR选举说明OSPF链路类型有3种:点到点,广播型,NBMA(非广播-多路访问网络(Non-BroadcastMultipleAccess,NBMA))。在3种链路类型上扩展出5种网络类型:点到点,广播,NBMA,点到多点,虚链路。其中虚链路较为特殊,不针对具体链路,而NBMA链路对应NBMA和点到多点两种网络类型。以上是RFC的定义,在Cisco路由器的实现上,
- 快速排序_详解快速排序算法
网站推广优化yetaoaiueo
排序算法算法
快速排序(Quicksort),计算机科学词汇,适用领域Pascal,c++等语言,是对冒泡排序算法的一种改进。快速排序的排序流程快速排序算法通过多次比较和交换来实现排序,其排序流程如下:(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于分界值,而右边部分中各元素都大于或等于分界值
- Flink 源码笔记03—StreamGraph到JobGraph
董嘻嘻
Flink源码笔记flinkjavabigdata
文章目录简介入口函数traverseStreamGraphAndGenerateHashesgenerateDeterministicHashgenerateUserSpecifiedHashsetChainingisChainable简介JobGraph可以认为是StreamGraph的优化图,它将一些符合特定条件的operators合并成一个operatorchain,以减少数据在节点之间序列
- 浅谈十大源码交易平台,找源码不走弯路
17源码网
游戏源代码管理
大家好啊,作为一名经历了无数代码风风雨雨的资深老码农,今天我就来跟你们聊聊十大源码交易平台。这可是我多年经验的结晶,希望你们能从中找到自己需要的宝贝。七爪网:七爪网,这名字很生动。七爪网提供各种类型的源码,包括游戏源码、分销商城源码、小程序源码等等,简直是码农的百宝箱。不管你是初学者还是经验丰富的老鸟,总能在这里找到适合的资源。而且,七爪网还提供详细的使用教程和技术支持,真是想得太周到了。86资源
- Python 函数-调用函数
赔罪
Python系统学习python开发语言
目录抽象调用函数数据类型转换练习小结我们知道圆的面积计算公式为:S=πr2当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:r1=12.34r2=9.08r3=73.1s1=3.14*r1*r1s2=3.14*r2*r2s3=3.14*r3*r3当代码出现有规律的重复的时候,你就需要当心了,每次写3.14*x*x不仅很麻烦,而且,如果要把3.14改成3.14
- Python数据容器(dict字典、set集合)
张小生180
python开发语言
dic字典dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。字典的创建使用大括号{}包含键值对,并用冒号:分隔键和值,形成键:值对。字典的特性唯一键:字典中的每个键都必须是唯一的。值可以取任何数据类型,如字符串,数字,元组。无序(Python3.6之前的版本):在Python3.6之前的版本中,字典是无序的。但从Python3.7
- 数仓_数据口径
TTXS123456789ABC
#XM1离线数仓_金融零售大数据
数仓_数据口径数据口径含义数据口径包含口径收敛数据口径含义在数据仓库(数仓)中,数据口径是指在数据统计和分析过程中,对数据的定义、计算方法、范围和标准等方面的详细规定。它确保了数据的一致性和准确性,避免因统计标准不一致导致的数据误解和混淆。数据口径包含具体来说,数据口径包括以下几个方面:数据定义:明确指标的具体含义。例如,“用户注册数”指的是在某一定时间内通过平台注册的新用户数量。计算方法:规定如
- flink核心特性
24k小善
flink大数据java架构
ApacheFlink核心特性详解一、流处理与批处理的统一Flink的核心设计理念之一是将流处理和批处理统一在一个框架中。这种统一性使得Flink在处理实时数据和批量数据时具有高度的灵活性和一致性。1.流处理与批处理的统一计算引擎流处理作为批处理的特例:Flink将批处理视为有限流(FiniteStream),从而实现了流处理和批处理的统一。统一API:Flink提供了DataStream和Dat
- flink反压详解
24k小善
flink架构大数据AI编程
Flink背压/反压(Backpressure)详解在ApacheFlink中,背压(Backpressure)是一个常见的性能问题,通常表现为数据流在某些节点处积压,导致整体处理速度下降甚至停滞。背压的发生可能源于硬件资源限制、任务逻辑复杂性、数据分布不均或外部系统瓶颈等因素。本文将从多个角度详细讲解Flink的背压问题,包括其成因、影响以及解决方案。一、什么是Flink背压?背压是指在数据流处
- 【隐私保护】身份认证的基本概念
小oo呆
【隐私保护】【学习心得】密码学安全隐私保护
在之前的文章中有提到认证技术,那么之前提到的认证技术和身份认证技术有什么不同呢?身份认证技术的到底是什么呢?如果想更系统的学习身份认证建议把之前的文章看看:【密码学】密码协议【密码学】密码协议的分类:②认证协议我认为认证技术是一个更广的概念,它指的是在计算机网络中确认操作者身份的过程以及确保数据完整性和来源可靠性的方法。也就是认证技术要认证三个东西:消息认证(验证消息的完整性)、数据源认证(验证消
- 推荐文章:md2pptx - Markdown到PowerPoint转换神器,让文档制作更简单!
邬情然Harley
推荐文章:md2pptx-Markdown到PowerPoint转换神器,让文档制作更简单!项目地址:https://gitcode.com/gh_mirrors/md/md2pptx在快节奏的工作和学习环境中,高效地整理和展示信息变得至关重要。今天,我们来聊聊一个开源宝藏工具——md2pptx,它能将简洁的Markdown格式文本轻松转化为专业的PowerPoint演示文稿。对于那些喜欢Mark
- Python基础---Dict(字典)
grace666
Python
1.字典以键值对组成,包含在{}中,字典的键必须为hashable,即不可变(字符串、元组、数字),并且唯一;值可以是任何类型#dict1={[1]:1}#报错:TypeError:unhashabletype:'list'#dict1={{1}:1}#报错:TypeError:unhashabletype:'set'dict1={(1,):1}print(dict1)#{(1,):1}dict1
- Pytorch实现论文之一种基于扰动卷积层和梯度归一化的生成对抗网络
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能机器学习生成对抗网络神经网络计算机视觉深度学习
简介简介:提出了一种针对鉴别器的梯度惩罚方法和在鉴别器中采用扰动卷积,拟解决锐梯度空间引起的训练不稳定性问题和判别器的记忆问题。论文题目:APerturbedConvolutionalLayerandGradientNormalizationbasedGenerativeAdversarialNetwork(一种基于扰动卷积层和梯度归一化的生成对抗网络)会议:20244thInternationa
- Pytorch实现之在LSGAN中结合重建损失
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能python
简介简介:这篇论文在LSGAN的基础上结合了重建损失来产生通过传统不良数据检测(BDD)机制的人工测量。这篇博客的主要内容是关于实现了重建损失与LSGAN的结合。论文题目:FalseDataInjectionAttacksBasedonLeastSquaresGenerativeAdversarialNetworkswithReconstructionLoss(基于重构损失最小二乘生成对抗网络的虚
- Pytorch实现论文:利用推土机距离与梯度惩罚在ACGAN中训练。
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch人工智能深度学习gan机器学习生成对抗网络
论文简介论文:ACWGAN-GPformillingtoolbreakagemonitoringwithimbalanceddata(ACWGAN-GP用于铣削工具断裂监视的数据不平衡数据)出处:RoboticsandComputer-IntegratedManufacturing论文摘要:铣削操作过程中的刀具破损监测(TBM)对于确保工件质量和最大限度减少经济损失至关重要。在训练数据充足、分布均
- 无人机遥感技术:从植被监测到生理参数反演的进阶之路
KY_chenzhao
无人机植被遥感参数反演
在当今的生态学和农林业研究中,无人机遥感技术已经成为获取植被信息的重要手段。它不仅能够快速覆盖大面积区域,还能提供高分辨率的多光谱和高光谱数据,为植被健康监测、生长状况评估和生理参数反演提供了强大的技术支持。今天,我们就来深入了解一下无人机遥感技术在植被定量监测中的应用。一、无人机遥感:为何备受青睐?无人机遥感技术结合了无人机的灵活性和遥感传感器的高精度,能够快速获取植被的多维度信息。与传统的卫星
- 设计模式之适配模式是什么?以及在Spring AOP中的拦截器链的使用源码解析。
一个儒雅随和的男子
设计模式spring设计模式springjava
前言 本文涉及到适配模式的基本用法,以及在SpringAOP中如何使用,首先需要了解适配模式的工作原理,然后结合SpringAOP的具体实现来详细详细解析源码。 首先,适配模式,也就是AdapterPattern,属于结构型设计模式,主要用于让不兼容的接口能够一起工作。要了解它的定义、结构、应用场景以及优缺点。然后,可能需要一个具体的例子来说明,比如电压适配器,这样用户更容易理解。 接下来是
- Pytorch实现论文之三元DCGAN生成RGB图像用于红外图像着色生成
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络深度学习pytorch机器学习计算机视觉
简介简介:采用了三次DCGAN单独生成单通道图像之后进行组成RGB图像放入鉴别器中检测,并在鉴别器和生成器的损失训练中采用梯度方法来提升或者降低权重。该方法将用于获得红外图像着色的生成。论文题目:InfraredImageColorizationbasedonaTripletDCGANArchitecture(基于三元DCGAN架构的红外图像着色)会议:2017IEEEConferenceonCo
- springcloud的组件及作用
zzyh123456
springcloudspring后端
SpringCloud是一个用于构建分布式系统的工具集,它提供了一系列组件来简化微服务架构的开发和部署。以下是一些关键的SpringCloud组件及其作用:1.服务注册与发现Eureka:Eureka是SpringCloud中的核心组件之一,用于实现服务注册与发现。服务实例通过EurekaServer进行注册,消费者通过EurekaServer查询服务实例的地址,实现服务的自动发现和调用。Eure
- 【JVM】详解直接内存
起名方面没有灵感
JVMjvmjava开发语言
文章目录1.直接内存概述2.直接内存的使用2.1Java缓冲区2.2直接内存3.直接内存的释放3.1直接内存释放原理4.禁用显式回收对直接内存的影响1.直接内存概述下面是《深入理解Java虚拟机第三版》2.2.7小节关于Java直接内存的描述。直接内存(DirectMemory)并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中定义的内存区域。但是这部分内存也被频繁地使用,而且也可能
- 【微服务】Nacos Discovery--服务治理
SoftwareDevOps
微服务分布式Nacos微服务注册中心服务治理
NacosDiscovery--服务治理前言服务治理常见的注册中心ZookeeperEurekaConsulNacosNacos入门搭建nacos环境将商品微服务注册到nacos将订单微服务注册到nacos总结前言上一章中,我们利用用户–订单–商品,实现了三个简单的微服务,实现了微服务之间的调用。但不知道大家有没有发现,我们是通过硬编码的方式,把服务者,消费者的服务Url,写到了代码中,这样做肯定
- Redis Cluster入门指南:原来分布式缓存可以这么简单!
weixin_42587823
数据库缓存redis分布式
RedisCluster入门指南:原来分布式缓存可以这么简单!一、当Redis单机顶不住了怎么办?想象你经营着一家网红奶茶店,最初只有1个收银员(单机Redis),每天能处理500杯订单。但突然有一天订单量暴涨到5000杯,收银员手忙脚乱,队伍排到马路对面——这就是单机Redis遇到高并发时的真实写照。这时聪明的店长会怎么做?不是让收银员007加班,而是:增加多个收银台(分片存储)每个收银台配备备
- Kubernetes 服务发现背后的秘密武器——CoreDNS
weixin_42587823
dnskubernetes服务发现容器coredns
Kubernetes服务发现背后的秘密武器——CoreDNS在Kubernetes集群中,CoreDNS是一个关键的基础组件,负责域名解析和服务发现。无论是内部服务通信还是访问外部域名,CoreDNS都为我们提供了高效、灵活的支持。本文将通俗易懂地介绍CoreDNS的作用、工作流程,并通过一些常见的配置案例帮助你更好地理解它的功能。CoreDNS的作用服务名称解析CoreDNS负责将Kuberne
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不