pytorch学习笔记(2)—构建数据类、图像预处理、读写模型

2. pytorch读数据

可以numpy读数据,然后torch.from_numpy转化成torch数据。pytorch中提供了torchvision包可以读入常用的图像数据集CIFAR10,MNIST,也有针对于这些图像的简单变换。

import torchvision.datasets
import torch.utils.data.DataLoader
import torchvision.transforms as transforms

读图像常用的包有 opencv、scikit-image、matplot等

import cv2
import matplotlib.pyplot as plt
import skimage 

读文件常用的包有pandas(解析cvs文件)...

import pandas as pd

2.1 数据集类

在pytorch中,用torch.utils.data.Dataset描述数据集类,在使用自己的数据时,需要重写_len和_getitem两个方法。数据集一般用dict封装,以faceLandmark为例,构造函数init读取的是图像的索引,len则返回数据集的长度,getitem则把数据集封装成dict类型,用来读取某个特定的图像

class FaceLandmarksDataset(Dataset):
    """Face Landmarks dataset."""

    def __init__(self, csv_file, root_dir, transform=None):
        """
        Args:
            csv_file (string): Path to the csv file with annotations.
            root_dir (string): Directory with all the images.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """
        self.landmarks_frame = pd.read_csv(csv_file)
        self.root_dir = root_dir
        self.transform = transform

    def __len__(self):
        return len(self.landmarks_frame)

    def __getitem__(self, idx):
        img_name = os.path.join(self.root_dir,
                                self.landmarks_frame.iloc[idx, 0])
        image = io.imread(img_name)
        landmarks = self.landmarks_frame.iloc[idx, 1:].as_matrix()
        landmarks = landmarks.astype('float').reshape(-1, 2)
        sample = {'image': image, 'landmarks': landmarks}

        if self.transform:
            sample = self.transform(sample)

        return sample

定义好数据类之后,读取数据时只要实例化这个类即可,如下表示实例化类并显示前四幅图像

face_dataset = FaceLandmarksDataset(csv_file='faces/face_landmarks.csv',
                                    root_dir='faces/')

fig = plt.figure()

for i in range(len(face_dataset)):
    sample = face_dataset[i]

    print(i, sample['image'].shape, sample['landmarks'].shape)

    ax = plt.subplot(1, 4, i + 1)
    plt.tight_layout()
    ax.set_title('Sample #{}'.format(i))
    ax.axis('off')
    show_landmarks(**sample)

    if i == 3:
        plt.show()
        break

2.2图像数据的变换

图像调整大小主要借助skimage包中的transform来实现:

img=transform.resize(old_image,(new_h,new_w))

这里,我们可以用别人写好的用于变换的类:

lass Rescale(object):
    """Rescale the image in a sample to a given size.

    Args:
        output_size (tuple or int): Desired output size. If tuple, output is
            matched to output_size. If int, smaller of image edges is matched
            to output_size keeping aspect ratio the same.
    """

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        self.output_size = output_size

    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']

        h, w = image.shape[:2]
        if isinstance(self.output_size, int):
            if h > w:
                new_h, new_w = self.output_size * h / w, self.output_size
            else:
                new_h, new_w = self.output_size, self.output_size * w / h
        else:
            new_h, new_w = self.output_size

        new_h, new_w = int(new_h), int(new_w)

        img = transform.resize(image, (new_h, new_w))

        # h and w are swapped for landmarks because for images,
        # x and y axes are axis 1 and 0 respectively
        landmarks = landmarks * [new_w / w, new_h / h]

        return {'image': img, 'landmarks': landmarks}


class RandomCrop(object):
    """Crop randomly the image in a sample.

    Args:
        output_size (tuple or int): Desired output size. If int, square crop
            is made.
    """

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            assert len(output_size) == 2
            self.output_size = output_size

    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']

        h, w = image.shape[:2]
        new_h, new_w = self.output_size

        top = np.random.randint(0, h - new_h)
        left = np.random.randint(0, w - new_w)

        image = image[top: top + new_h,
                      left: left + new_w]

        landmarks = landmarks - [left, top]

        return {'image': image, 'landmarks': landmarks}


class ToTensor(object):
    """Convert ndarrays in sample to Tensors."""

    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']

        # swap color axis because
        # numpy image: H x W x C
        # torch image: C X H X W
        image = image.transpose((2, 0, 1))
        return {'image': torch.from_numpy(image),
                'landmarks': torch.from_numpy(landmarks)}

调整图像数据的格式主要用np中的transpose来实现,注意在numpy 中图像以H x W x C的格式存储,在torch中,图像用C x H x W存储。另外torchvision中的transfomrs.Compose可以把一系列变换组合起来,变换后的数据集可以实例化为:

transformed_dataset = FaceLandmarksDataset(csv_file='faces/face_landmarks.csv',
                                           root_dir='faces/',
                                           transform=transforms.Compose([
                                               Rescale(256),
                                               RandomCrop(224),
                                               ToTensor()
                                           ]))

for i in range(len(transformed_dataset)):
    sample = transformed_dataset[i]

    print(i, sample['image'].size(), sample['landmarks'].size())

    if i == 3:
        break

当然,torchvision也提供了现成的transforms,如下:

import torch
from torchvision import transforms, datasets

data_transform = transforms.Compose([
        transforms.RandomSizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5],
                             std=[0.5, 0.5, 0.5])
    ])
hymenoptera_dataset = datasets.ImageFolder(root='hymenoptera_data/train',
                                           transform=data_transform)
dataset_loader = torch.utils.data.DataLoader(hymenoptera_dataset,
                                             batch_size=4, shuffle=True,
                                             num_workers=4)

这种变换的方式最常见,

==transforms.Compose==
就是把各种变换组合,
==transforms.RandomSizeCrop(224)==
就是随机剪切,最最重要的==transforms.ToTensor()==
就是把形状为[H, W, C]的取值为[0,255]的numpy.ndarray,转换成形状为[C, H, W],取值为[0, 1.0]的torch.FloadTensor。
还原时,使用==torch.clamp(0,1)==
最后
==transforms.Normalize==是最常见的归一化手段,把图像从[0,1]转化成[-1,1 ]

2.3 读数据

我们可以写个循环每次实例化一个数据类,然后把实例出来的图片放入网络,但这样做就忽略了深度学习中常用的Batch, shuffling 和multiprocessing.这些问题可以用pytorch 中的Dataloader来解决。导入data loader 包

import torch.utils.data.DataLoader

DataLoarder接受一个Dataset类,可以定义batch size shuffle,以及线程个数

dataloader = DataLoader(transformed_dataset, batch_size=4,shuffle=True, num_workers=4)

2.4 读写模型

训练好的模型可以保存参数或者整个模型,设model为某个模型的实例,保存参数可用以下语句

torch.save(model.state_dict(),'./pretrained/model.pth')

读取的时候则是

model.load_state_dict(torch.load('./pretrained/model.pth'))

你可能感兴趣的:(pytorch学习笔记(2)—构建数据类、图像预处理、读写模型)