- 人工智能前沿技术进展与应用前景探究
戒了9
人工智能搜索引擎百度
一、引言1.1研究背景与意义人工智能作为一门极具变革性的前沿技术,正深刻地改变着人类社会的各个层面。从其诞生之初,人工智能便承载着人类对智能机器的无限遐想与探索。自20世纪中叶起,人工智能踏上了它的发展征程,历经了多个重要阶段,每一阶段都伴随着理论的突破、技术的革新以及应用领域的拓展。在初级阶段(1943-1956),沃伦・麦卡洛克和沃尔特・皮茨提出的人工神经网络基本模型,为人工智能的发展奠定了初
- 人工智能前沿技术进展与应用前景探究
戒了9
搜索引擎
一、引言1.1研究背景与意义人工智能作为一门极具变革性的前沿技术,正深刻地改变着人类社会的各个层面。从其诞生之初,人工智能便承载着人类对智能机器的无限遐想与探索。自20世纪中叶起,人工智能踏上了它的发展征程,历经了多个重要阶段,每一阶段都伴随着理论的突破、技术的革新以及应用领域的拓展。在初级阶段(1943-1956),沃伦・麦卡洛克和沃尔特・皮茨提出的人工神经网络基本模型,为人工智能的发展奠定了初
- 一、深度学习的基本介绍
关关钧
深度学习深度学习人工智能神经网络
机器学习的基本步骤:前馈运算、反向传播计算梯度、根据梯度更新参数值。一、定义及基本概念深度学习,就是一种利用深度人工神经网络来进行自动分类、预测和学习的技术。它可以从海量的数据中自动学习,找寻数据中的特征。所以说,它的本质就是自动提取特征的能力。可以说,深度学习就等于深度人工神经网络。一般认为超过三层的神经网络就可以叫做深度神经网络。深度学习属于一种特殊的人工智能技术。反向传播算法:此算法是人工神
- 神经网络的通俗介绍
courniche
神经网络人工智能算法
人工神经网络,是一种模仿人类大脑工作原理的数学模型。人类的大脑是由无数的小“工作站”组成的,每个工作站叫做“神经元”。这些神经元通过“电线”互相连接,负责接收、处理和传递信息。一、人类大脑神经网络人类大脑的神经网络大概长这个样子:人类大脑的神经网络包括神经元和连接神经元的突触组成,大脑神经电信号在网络中传递实现信息的处理和分析。二、人工神经网络人工神经网络(简称:神经网络),是一种模仿人类大脑工作
- CNN+LSTM+AM研究方向初尝试
qzhqbb
勇闯学术圈机器学习cnnlstm人工智能笔记
CNN+LSTM+AM研究方向初尝试简单介绍CNNCNN的基本结构卷积层(ConvolutionalLayer):该层通过卷积操作提取输入数据的特征。卷积操作使用多个卷积核(滤波器)对输入图像进行局部感知,从而识别出边缘、纹理等基本特征。卷积层的输出称为特征图(FeatureMap)。激活层(ActivationLayer):常用的激活函数包括ReLU(线性整流单元),用于引入非线性,使网络能够学
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 兴福电子即将科创板上市:国际级水平研发实力突出 毛利率好于同行
港湾商业观察
用户运营
《港湾商业观察》王璐湖北兴福电子材料股份有限公司1月20日晚间披露上市公告书,公司股票将于2025年1月22日在上海证券交易所科创板上市。股票简称为兴福电子。股票代码为688545。兴福电子本次公开发行股票数量为1亿股,占本次发行后总股本的27.78%。本次发行全部为新股发行,不涉及股东公开发售股份。兴福电子主要从事湿电子化学品的研发、生产和销售,主要产品包括电子级磷酸、电子级硫酸、电子级双氧水等
- BP神经网络概述及其预测的Python和MATLAB实现
追蜻蜓追累了
神经网络回归算法深度学习机器学习启发式算法lstmgru
##一、背景###1.1人工神经网络的起源人工神经网络(ArtificialNeuralNetwork,ANN)受生物神经网络的启发,模拟大脑神经元之间的连接和信息处理方式。尽管早在1943年就有学者如McCulloch和Pitts提出了数学模型,但人工神经网络真正被广泛研究是在20世纪80年代。###1.2BP神经网络的兴起反向传播(BackPropagation,简称BP)算法是20世纪80年
- YOLOv10改进,YOLOv10检测头融合RepConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 2024年诺贝尔奖揭晓:机遇与挑战并存
人工智能aigcopenai
ChatGPT竟然也不相信诺贝尔奖结果!2024年诺贝尔奖对科研领域来说是个重要的时刻。诺贝尔奖可谓是科学界的“奥斯卡”,每年的获奖者都会引起广泛关注。今年,瑞典皇家科学院公布,约翰·J·霍普菲尔德和杰弗里·E·辛顿荣获诺贝尔物理学奖,这个消息让不少人感到惊讶。诺贝尔物理学奖:意外的突破一次颁奖的震撼诺贝尔奖的官方网站指出,霍普菲尔德和辛顿因其在人工神经网络和机器学习领域的基础性研究而获奖。他们的
- 【激活函数总结】Pytorch中的激活函数详解: ReLU、Leaky ReLU、Sigmoid、Tanh 以及 Softmax
阿_旭
深度学习知识点pytorch人工智能python激活函数深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- 【人工智能】大话什么是神经网络
路上阳光
什么是人工智能?通俗来讲,就是让机器能像人一样思考。这个无需解释太多,因为通过各种科幻电影我们已经对人工智能很熟悉了。大家现在感兴趣的应该是——如何实现人工智能?从1956年夏季首次提出“人工智能”这一术语开始,科学家们尝试了各种方法来实现它。这些方法包括专家系统,决策树、归纳逻辑、聚类等等,但这些都是假智能。直到人工神经网络技术的出现,才让机器拥有了“真智能”。为什么说之前的方法都是假智能呢?因
- 市场走势小幅偏离预期,慎防小概率事件
冯思铭
昨天公司观点明确了:震荡蓄力,继续反弹今天市场低开低走持续震荡走低个股整体涨跌互现本周市场整体以震荡调整格局为主市场并未如我们前期预估的顺势继续往上反弹市场走势小幅偏离我们预期从全周来看市场整体依然在短期震荡区间上方震荡整理上周末观点预期本周市场有机会顺势继续往上反弹但本周指数盘中再创新高后便回踩短期震荡区间上沿市场整体走势再度弱于我们的预期指数反弹高度可能比我们预期不高的还要再低而个股则稍好于指
- pytorch正向传播没问题,loss.backward()使定义的神经网络中权重参数变为nan
加速却甩不掉伤悲
pytorch神经网络人工智能
记录一个非常坑爹的bug:loss回传导致神经网络中一个linear层的权重参数变为nan1.首先loss值是正常数值;2.查了好多网上的解决办法:检查原始输入神经网络数据有没有nan值,初始化权重参数,使用relu激活函数,梯度裁剪,降低优化器的学习率等等都没解决,个人认为这些应该影响不大,一般不会出问题;3.最后是使用如下异常检测:检测在loss回传过程中哪一块出现了问题torch.autog
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 美债收率倒挂警惕美指反转!
方世平
方世平—5月31日分析昨日国际现货黄金收报1288.65美元/盎司,白银收报14.53美元/盎司。美国一季度GDP增长3.1%好于预期3%,略低于初值3.2%。总体而言,美国经济继续稳健增长,薪资增速快速上扬。但经济学家认为近期增速高于经济潜力,这意味着随着减税和强劲的支出刺激因素消退,美国经济将有放缓的risk。克拉里达表示,美国经济“形势非常好”,同过去20年一样,接近美联储就业最大化和物价平
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- AI领域常用缩写词
大道不孤,众行致远
技术杂谈人工智能
学习AI的最大收获是英文水平长了长,多认识了几个单词:人工智能(ArtificialIntelligence,AI)通用人工智能(ArtificialGeneralIntelligence,AGI)生成式AI(AIgeneratedcontent,AIGC)智能体(Agent)人工神经网络(ArtificialNeuralNetworks,ANN)卷积神经网络(ConvolutionalNeura
- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 人人都能懂的机器学习——用Keras搭建人工神经网络02
苏小菁在编程
感知机1957年,FrankRosenblatt发明了感知机,它是最简单的人工神经网络之一。感知机是基于一个稍稍有些不同的人工神经元——阈值逻辑元(TLU)(见图1.4),有时也被称为线性阈值元(LTU)。这种神经元的输入和输出不再是二进制的布尔值,而是数字。每一个输入连接都与权重值相关联,TLU将各个输入加权取和然后将其带入一个阶跃函数,并输出结果:上述计算过程如下图1.4所示图1.4阈值逻辑单
- 3.关于Detr
安逸sgr
Transformer计算机视觉目标检测transformer
关于Detr模型架构总体架构classTransformer(nn.Module):def__init__(self,d_model=512,nhead=8,num_encoder_layers=6,num_decoder_layers=6,dim_feedforward=2048,dropout=0.1,activation="relu",normalize_before=False,retur
- 鲍威尔携美联储纪要重磅来临!
方世平
方世平—11月26日分析上周五国际现货黄金收报1222.85美元/盎司,白银收报14.24美元/盎司。加拿大10月份CPI年率为2.4%,好于预期及前值的2.2%,主要受能源和食品价格同比上涨的推动,这意味着加拿大央行年加息三次可能性增加,该报告是加拿大央行12月会议前的最后一份通胀报告。本周二美联储克拉里达在纽约发表讲话。克拉里达上周讲话偏谨慎,一度打压美指走软。他指出美联储越来越接近中性利率水
- 深度学习(一)
小泽爱刷题
深度学习人工智能
稀疏激活是ReLU函数的一个重要特性,它使得在前向传播和反向传播过程中,网络的计算变得更加高效。大多数神经元的激活值为0可以减少计算和存储开销,从而提高训练效率。sigmoid适用于常用于二分类任务的输出层,因为它能将输出值压缩到[0,1]之间,表示概率值。非零均值:输出值总是非零,这可能会导致训练过程中较慢的收敛。梯度消失问题:当输入值很大或很小时,梯度接近于0,导致训练过程中梯度更新变得缓慢。
- 143自然语言处理进阶手册--人工神经网络初探
Jachin111
人工神经网络初探神经网络与人类大脑人类虽然拥有智慧,但对智慧是如何产生的却不得而知,对于大脑结构的模仿或许是一个探索的起点,神经网络的起点就在这里。准确地说,这里所述的神经网络其实是人工神经网络,仅仅是模仿了人脑神经网络的部分结构特征与机理。在本小节,我们来对神经网络与人类大脑来作一番对比,比较两者的不同与联系。人类神经系统的基本单元是神经元,约有1000亿个,是一种高度分化的细胞。神经元能够接受
- 深度学习速通系列:梯度消失vs梯度爆炸
Ven%
深度学习速通系列人工智能深度学习python
梯度消失和梯度爆炸是深度学习中训练深层神经网络时常见的两个问题,它们影响网络的训练过程和性能。梯度消失(VanishingGradientProblem)定义:梯度消失是指在深层神经网络的反向传播过程中,由于链式法则,梯度值随着层数的增加而迅速减小,最终趋近于零。原因:激活函数的导数很小,如Sigmoid或Tanh函数在输入值非常大或非常小的时候导数接近零。权重初始化不当,导致梯度在网络中的传播过
- 深度学习:探索人工智能的无限可能
木小梦(๑• . •๑)
人工智能深度学习
引言:在当今这个数字化时代,人工智能(AI)已经成为了一个热门话题。从自动驾驶汽车到智能助手,AI正在逐渐改变我们的生活方式。而在AI领域,深度学习是近年来发展最为迅速的一个分支。本文将深入探讨深度学习及其相关领域,包括计算机视觉、自然语言处理、神经网络和强化学习。1.深度学习深度学习是一种基于人工神经网络的机器学习方法,它试图模拟人脑的工作方式,通过训练大量数据来自动学习数据的内在规律和表示层次
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt